Fine-grained leukocyte classification with deep residual learning for microscopic images F Qin, N Gao, Y Peng, Z Wu, S Shen, A Grudtsin Computer methods and programs in biomedicine 162, 243-252, 2018 | 138 | 2018 |
Unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering Z Wu, Y Wang, R Shou, B Chen, X Liu Computers & Graphics 37 (6), 628-637, 2013 | 68 | 2013 |
Patchformer: An efficient point transformer with patch attention C Zhang, H Wan, X Shen, Z Wu Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022 | 66 | 2022 |
PVT: Point‐voxel transformer for point cloud learning C Zhang, H Wan, X Shen, Z Wu International Journal of Intelligent Systems 37 (12), 11985-12008, 2022 | 56 | 2022 |
Interactive shape co-segmentation via label propagation Z Wu, R Shou, Y Wang, X Liu Computers & Graphics 38, 248-254, 2014 | 52 | 2014 |
Pvt: Point-voxel transformer for 3d deep learning C Zhang, H Wan, S Liu, X Shen, Z Wu arXiv preprint arXiv:2108.06076 2, 6, 2021 | 36 | 2021 |
Joint analysis of shapes and images via deep domain adaptation Z Wu, Y Zhang, M Zeng, F Qin, Y Wang Computers & Graphics 70, 140-147, 2018 | 17 | 2018 |
Patchformer: A versatile 3d transformer based on patch attention Z Cheng, H Wan, X Shen, Z Wu arXiv preprint arXiv:2111.00207 6 (7), 14, 2021 | 14 | 2021 |
Hoi-diff: Text-driven synthesis of 3d human-object interactions using diffusion models X Peng, Y Xie, Z Wu, V Jampani, D Sun, H Jiang arXiv preprint arXiv:2312.06553, 2023 | 13 | 2023 |
Trajectory-aware body interaction transformer for multi-person pose forecasting X Peng, S Mao, Z Wu Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 13 | 2023 |
Graph-PBN: Graph-based parallel branch network for efficient point cloud learning C Zhang, H Chen, H Wan, P Yang, Z Wu Graphical Models 119, 101120, 2022 | 9 | 2022 |
MVPN: multi-view prototype network for 3D shape recognition Z Wu, P Yang, Y Wang IEEE Access 7, 130363-130372, 2019 | 7 | 2019 |
Active 3-D shape cosegmentation with graph convolutional networks Z Wu, M Zeng, F Qin, Y Wang, J Kosinka IEEE computer graphics and applications 39 (2), 77-88, 2019 | 7 | 2019 |
Efficient L0 resampling of point sets X Cheng, M Zeng, J Lin, Z Wu, X Liu Computer Aided Geometric Design 75, 101790, 2019 | 6 | 2019 |
Upsampling autoencoder for self-supervised point cloud learning C Zhang, J Shi, X Deng, Z Wu arXiv preprint arXiv:2203.10768, 2022 | 5 | 2022 |
A deep reinforcement learning approach for autonomous car racing F Guo, Z Wu E-Learning and Games: 12th International Conference, Edutainment 2018, Xi'an …, 2019 | 4 | 2019 |
Integrated modeling, simulation, and visualization for nanomaterials F Qin, H Xia, Y Peng, Z Wu Complexity 2018 (1), 5083247, 2018 | 4 | 2018 |
PointCMC: cross-modal multi-scale correspondences learning for point cloud understanding H Zhou, X Peng, Y Luo, Z Wu Multimedia Systems 30 (3), 138, 2024 | 3 | 2024 |
Somoformer: Social-aware motion transformer for multi-person motion prediction X Peng, Y Shen, H Wang, B Nie, Y Wang, Z Wu arXiv preprint arXiv:2208.09224, 2022 | 3 | 2022 |
Point-voxel transformer: An efficient approach to 3d deep learning C Zhang, H Wan, S Liu, X Shen, Z Wu CoRR, vol. abs/2108.06076, 2021 | 3 | 2021 |