Coordinated deep reinforcement learners for traffic light control E van der Pol, FA Oliehoek NeurIPS Workshop on Learning, Inference and Control of Multi-Agent Systems, 2016 | 605 | 2016 |
Contrastive Learning of Structured World Models T Kipf, E van der Pol, M Welling International Conference on Learning Representations (ICLR), 2019 | 291 | 2019 |
Geometric and Physical Quantities improve E (3) Equivariant Message Passing J Brandstetter, R Hesselink, E van der Pol, E Bekkers, M Welling International Conference on Learning Representations (ICLR), 2022 | 176 | 2022 |
MDP homomorphic networks: Group symmetries in reinforcement learning E van der Pol, D Worrall, H van Hoof, F Oliehoek, M Welling Advances in Neural Information Processing Systems (NeurIPS), 2020 | 145 | 2020 |
Hyperspherical Prototype Networks P Mettes, E van der Pol, CGM Snoek Advances in Neural Information Processing Systems (NeurIPS), 2019 | 120 | 2019 |
Deep reinforcement learning for coordination in traffic light control E Van Der Pol Master's thesis, University of Amsterdam, 2016 | 96 | 2016 |
Plannable Approximations to MDP Homomorphisms: Equivariance under Actions E van der Pol, T Kipf, FA Oliehoek, M Welling International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2020 | 86 | 2020 |
GANGs: Generative adversarial network games FA Oliehoek, R Savani, J Gallego-Posada, E van der Pol, ED De Jong, ... arXiv preprint arXiv:1712.00679, 2017 | 43 | 2017 |
Beyond local nash equilibria for adversarial networks FA Oliehoek, R Savani, J Gallego, E Pol, R Groß Belgian Dutch Conference on Machine Learning (BeneLearn), 2018 | 41 | 2018 |
Visual rationalizations in deep reinforcement learning for atari games L Weitkamp, E van der Pol, Z Akata Benelux Conference on Artificial Intelligence (BNAIC), 2018 | 25 | 2018 |
Multi-Agent MDP Homomorphic Networks E van der Pol, H van Hoof, FA Oliehoek, M Welling International Conference on Learning Representations (ICLR), 2022 | 20 | 2022 |
Equivariant Networks for Zero-Shot Coordination D Muglich, CS de Witt, E van der Pol, S Whiteson, J Foerster Advances in Neural Information Processing Systems (NeurIPS), 2022 | 16 | 2022 |
Maximum class separation as inductive bias in one matrix T Kasarla, GJ Burghouts, M van Spengler, E van der Pol, R Cucchiara, ... Advances in Neural Information Processing Systems (NeurIPS), 2022 | 15 | 2022 |
Linguistic style accommodation in disagreements E Van der Pol, S Gieske, R Fernández Proceedings of the Fifth Joint Conference on Lexical and Computational …, 2016 | 5 | 2016 |
One-shot imitation learning via interaction warping O Biza, S Thompson, KR Pagidi, A Kumar, E van der Pol, R Walters, T Kipf, ... arXiv preprint arXiv:2306.12392, 2023 | 4 | 2023 |
Video demo: Deep reinforcement learning for coordination in traffic light control E van der Pol, FA Oliehoek Benelux Conference on Artificial Intelligence (BNAIC), 2016 | 3 | 2016 |
The impact of negative sampling on contrastive structured world models O Biza, E van der Pol, T Kipf ICML Workshop on Self-Supervised Learning for Reasoning and Perception, 2021 | 2 | 2021 |
Configuring a neural network for equivariant or invariant behavior E van der Pol, FA Oliehoek, H Van Hoof, M Welling, M Herman US Patent App. 17/869,438, 2023 | | 2023 |
Symmetry and structure in deep reinforcement learning E van der Pol | | 2023 |
Physical environment interaction with an equivariant policy M Herman, M Welling, H Van Hoof, E van der Pol, D Worrall, FA Oliehoek US Patent App. 17/642,451, 2022 | | 2022 |