Deep speech 2: End-to-end speech recognition in english and mandarin D Amodei, S Ananthanarayanan, R Anubhai, J Bai, E Battenberg, C Case, ... International conference on machine learning, 173-182, 2016 | 3705 | 2016 |
Deep speech: Scaling up end-to-end speech recognition A Hannun, C Case, J Casper, B Catanzaro, G Diamos, E Elsen, ... arXiv preprint arXiv:1412.5567, 2014 | 2641 | 2014 |
Mixed precision training P Micikevicius, S Narang, J Alben, G Diamos, E Elsen, D Garcia, ... arXiv preprint arXiv:1710.03740, 2017 | 1769 | 2017 |
Training compute-optimal large language models J Hoffmann, S Borgeaud, A Mensch, E Buchatskaya, T Cai, E Rutherford, ... arXiv preprint arXiv:2203.15556, 2022 | 1253 | 2022 |
Parallel wavenet: Fast high-fidelity speech synthesis A Oord, Y Li, I Babuschkin, K Simonyan, O Vinyals, K Kavukcuoglu, ... International conference on machine learning, 3918-3926, 2018 | 994 | 2018 |
Efficient neural audio synthesis N Kalchbrenner, E Elsen, K Simonyan, S Noury, N Casagrande, ... International Conference on Machine Learning, 2410-2419, 2018 | 988 | 2018 |
Scaling language models: Methods, analysis & insights from training gopher JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ... arXiv preprint arXiv:2112.11446, 2021 | 881 | 2021 |
Improving language models by retrieving from trillions of tokens S Borgeaud, A Mensch, J Hoffmann, T Cai, E Rutherford, K Millican, ... International conference on machine learning, 2206-2240, 2022 | 824 | 2022 |
The state of sparsity in deep neural networks T Gale, E Elsen, S Hooker arXiv preprint arXiv:1902.09574, 2019 | 746 | 2019 |
Rigging the lottery: Making all tickets winners U Evci, T Gale, J Menick, PS Castro, E Elsen International conference on machine learning, 2943-2952, 2020 | 544 | 2020 |
Enabling factorized piano music modeling and generation with the MAESTRO dataset C Hawthorne, A Stasyuk, A Roberts, I Simon, CZA Huang, S Dieleman, ... arXiv preprint arXiv:1810.12247, 2018 | 505 | 2018 |
Exploring sparsity in recurrent neural networks S Narang, E Elsen, G Diamos, S Sengupta arXiv preprint arXiv:1704.05119, 2017 | 358 | 2017 |
Onsets and frames: Dual-objective piano transcription C Hawthorne, E Elsen, J Song, A Roberts, I Simon, C Raffel, J Engel, ... arXiv preprint arXiv:1710.11153, 2017 | 339 | 2017 |
Liszt: a domain specific language for building portable mesh-based PDE solvers Z DeVito, N Joubert, F Palacios, S Oakley, M Medina, M Barrientos, ... Proceedings of 2011 international conference for high performance computing …, 2011 | 330 | 2011 |
Large calculation of the flow over a hypersonic vehicle using a GPU E Elsen, P LeGresley, E Darve Journal of Computational Physics 227 (24), 10148-10161, 2008 | 293 | 2008 |
High fidelity speech synthesis with adversarial networks M Bińkowski, J Donahue, S Dieleman, A Clark, E Elsen, N Casagrande, ... arXiv preprint arXiv:1909.11646, 2019 | 285 | 2019 |
Dsd: Dense-sparse-dense training for deep neural networks S Han, J Pool, S Narang, H Mao, E Gong, S Tang, E Elsen, P Vajda, ... arXiv preprint arXiv:1607.04381, 2016 | 239 | 2016 |
Sparse gpu kernels for deep learning T Gale, M Zaharia, C Young, E Elsen SC20: International Conference for High Performance Computing, Networking …, 2020 | 227 | 2020 |
End-to-end adversarial text-to-speech J Donahue, S Dieleman, M Bińkowski, E Elsen, K Simonyan arXiv preprint arXiv:2006.03575, 2020 | 213 | 2020 |
Fast sparse convnets E Elsen, M Dukhan, T Gale, K Simonyan Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 164 | 2020 |