Improved techniques for training gans T Salimans, I Goodfellow, W Zaremba, V Cheung, A Radford, X Chen Advances in Neural Information Processing Systems, 2226-2234, 2016 | 10343 | 2016 |
Infogan: Interpretable representation learning by information maximizing generative adversarial nets X Chen, Y Duan, R Houthooft, J Schulman, I Sutskever, P Abbeel Advances in Neural Information Processing Systems, 2172-2180, 2016 | 5332 | 2016 |
Improved variational inference with inverse autoregressive flow DP Kingma, T Salimans, R Jozefowicz, X Chen, I Sutskever, M Welling Advances in Neural Information Processing Systems, 4743-4751, 2016 | 2048 | 2016 |
Benchmarking deep reinforcement learning for continuous control Y Duan, X Chen, R Houthooft, J Schulman, P Abbeel International Conference on Machine Learning, 1329-1338, 2016 | 2020 | 2016 |
Evolution strategies as a scalable alternative to reinforcement learning T Salimans, J Ho, X Chen, S Sidor, I Sutskever arXiv preprint arXiv:1703.03864, 2017 | 1708 | 2017 |
A Simple Neural Attentive Meta-Learner N Mishra, M Rohaninejad, X Chen, P Abbeel NIPS 2017 Workshop on Meta-Learning, 2017 | 1653 | 2017 |
RL : Fast Reinforcement Learning via Slow Reinforcement Learning Y Duan, J Schulman, X Chen, PL Bartlett, I Sutskever, P Abbeel arXiv preprint arXiv:1611.02779, 2016 | 1114 | 2016 |
Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications T Salimans, A Karpathy, X Chen, DP Kingma arXiv preprint arXiv:1701.05517, 2017 | 1091 | 2017 |
VIME: Variational information maximizing exploration R Houthooft, X Chen, Y Duan, J Schulman, F De Turck, P Abbeel Advances in Neural Information Processing Systems, 1109-1117, 2016 | 930 | 2016 |
Evaluating Protein Transfer Learning with TAPE R Rao, N Bhattacharya, N Thomas, Y Duan, X Chen, J Canny, P Abbeel, ... arXiv preprint arXiv:1906.08230, 2019 | 805 | 2019 |
Variational Lossy Autoencoder X Chen, DP Kingma, T Salimans, Y Duan, P Dhariwal, J Schulman, ... International Conference on Learning Representations (ICLR), 2017 | 780 | 2017 |
Parameter Space Noise for Exploration M Plappert, R Houthooft, P Dhariwal, S Sidor, RY Chen, X Chen, T Asfour, ... arXiv preprint arXiv:1706.01905, 2017 | 721 | 2017 |
Deep imitation learning for complex manipulation tasks from virtual reality teleoperation T Zhang, Z McCarthy, O Jowl, D Lee, X Chen, K Goldberg, P Abbeel 2018 IEEE International Conference on Robotics and Automation (ICRA), 1-8, 2018 | 715 | 2018 |
# Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning H Tang, R Houthooft, D Foote, A Stooke, X Chen, Y Duan, J Schulman, ... arXiv preprint arXiv:1611.04717, 2016 | 677 | 2016 |
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design J Ho, X Chen, A Srinivas, Y Duan, P Abbeel arXiv preprint arXiv:1902.00275, 2019 | 470 | 2019 |
Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules D Ho, E Liang, I Stoica, P Abbeel, X Chen arXiv preprint arXiv:1905.05393, 2019 | 468 | 2019 |
Meta Learning Shared Hierarchies K Frans, J Ho, X Chen, P Abbeel, J Schulman arXiv preprint arXiv:1710.09767, 2017 | 416 | 2017 |
Equivalence between policy gradients and soft q-learning J Schulman, X Chen, P Abbeel arXiv preprint arXiv:1704.06440, 2017 | 325 | 2017 |
PixelSNAIL: An Improved Autoregressive Generative Model X Chen, N Mishra, M Rohaninejad, P Abbeel arXiv preprint arXiv:1712.09763, 2017 | 271 | 2017 |
NeuroCard: One Cardinality Estimator for All Tables Z Yang, A Kamsetty, S Luan, E Liang, Y Duan, X Chen, I Stoica arXiv preprint arXiv:2006.08109, 2020 | 168 | 2020 |