Deep Ordinal Regression Network for Monocular Depth Estimation H Fu, M Gong, C Wang, K Batmanghelich, D Tao Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018 | 1852 | 2018 |
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge S Bakas, M Reyes, A Jakab, S Bauer, M Rempfler, A Crimi, RT Shinohara, ... arXiv preprint arXiv:1811.02629, 2018 | 1840 | 2018 |
Deep Domain Generalization via Conditional Invariant Adversarial Networks Y Li, X Tian, M Gong, Y Liu, T Liu, K Zhang, D Tao Proceedings of the European Conference on Computer Vision (ECCV), 624-639, 2018 | 729 | 2018 |
Domain Adaptation with Conditional Transferable Components M Gong, K Zhang, T Liu, D Tao, C Glymour, B Schölkopf Proceedings of The 33rd International Conference on Machine Learning, 2839-2848, 2016 | 394 | 2016 |
Part-dependent label noise: Towards instance-dependent label noise X Xia, T Liu, B Han, N Wang, M Gong, H Liu, G Niu, D Tao, M Sugiyama Advances in Neural Information Processing Systems 33, 7597-7610, 2020 | 269 | 2020 |
Cris: Clip-driven referring image segmentation Z Wang, Y Lu, Q Li, X Tao, Y Guo, M Gong, T Liu Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 255 | 2022 |
Domain generalization via entropy regularization S Zhao, M Gong, T Liu, H Fu, D Tao Advances in Neural Information Processing Systems 33, 16096-16107, 2020 | 229 | 2020 |
Sub-center arcface: Boosting face recognition by large-scale noisy web faces J Deng, J Guo, T Liu, M Gong, S Zafeiriou European Conference on Computer Vision, 741-757, 2020 | 225 | 2020 |
Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping H Fu, M Gong, C Wang, K Batmanghelich, K Zhang, D Tao Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019 | 223 | 2019 |
Dual t: Reducing estimation error for transition matrix in label-noise learning Y Yao, T Liu, B Han, M Gong, J Deng, G Niu, M Sugiyama Advances in Neural Information Processing Systems 33, 2020 | 219 | 2020 |
Domain generalization via conditional invariant representations Y Li, M Gong, X Tian, T Liu, D Tao Thirty-Second AAAI Conference on Artificial Intelligence, 2018 | 213 | 2018 |
Multi-source domain adaptation: A causal view K Zhang, M Gong, B Schölkopf Twenty-ninth AAAI conference on artificial intelligence, 2015 | 213 | 2015 |
A coarse-fine network for keypoint localization S Huang, M Gong, D Tao Proceedings of the IEEE International Conference on Computer Vision, 3028-3037, 2017 | 207 | 2017 |
Learning with biased complementary labels X Yu, T Liu, M Gong, D Tao Proceedings of the European Conference on Computer Vision (ECCV), 68-83, 2018 | 202 | 2018 |
Geometry-aware symmetric domain adaptation for monocular depth estimation S Zhao, H Fu, M Gong, D Tao Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019 | 201 | 2019 |
3d-future: 3d furniture shape with texture H Fu, R Jia, L Gao, M Gong, B Zhao, S Maybank, D Tao International Journal of Computer Vision, 1-25, 2021 | 175 | 2021 |
Adaptive context-aware multi-modal network for depth completion S Zhao, M Gong, H Fu, D Tao IEEE Transactions on Image Processing 30, 5264-5276, 2021 | 143 | 2021 |
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels X Xia, T Liu, B Han, M Gong, J Yu, G Niu, M Sugiyama arXiv preprint arXiv:2106.00445, 2021 | 114 | 2021 |
Correcting the Triplet Selection Bias for Triplet Loss B Yu, T Liu, M Gong, C Ding, D Tao Proceedings of the European Conference on Computer Vision (ECCV), 71-87, 2018 | 107 | 2018 |
Discovering Temporal Causal Relations from Subsampled Data. M Gong, K Zhang, B Schoelkopf, D Tao, P Geiger ICML, 1898-1906, 2015 | 97 | 2015 |