关注
Xingyi Guan
Xingyi Guan
其他姓名Nancy Xingyi Guan
在 berkeley.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces
M Haghighatlari, J Li, X Guan, O Zhang, A Das, CJ Stein, F Heidar-Zadeh, ...
Digital Discovery 1 (3), 333-343, 2022
852022
Learning to make chemical predictions: the interplay of feature representation, data, and machine learning methods
M Haghighatlari, J Li, F Heidar-Zadeh, Y Liu, X Guan, T Head-Gordon
Chem 6 (7), 1527-1542, 2020
852020
Recent advances for improving the accuracy, transferability, and efficiency of reactive force fields
I Leven, H Hao, S Tan, X Guan, KA Penrod, D Akbarian, B Evangelisti, ...
Journal of chemical theory and computation 17 (6), 3237-3251, 2021
562021
A benchmark dataset for Hydrogen Combustion
X Guan, A Das, CJ Stein, F Heidar-Zadeh, L Bertels, M Liu, ...
Scientific data 9 (1), 215, 2022
122022
Mechanism of the stereoselective catalysis of Diels–Alderase PyrE3 involved in pyrroindomycin biosynthesis
B Li, X Guan, S Yang, Y Zou, W Liu, KN Houk
Journal of the American Chemical Society 144 (11), 5099-5107, 2022
122022
Protein C-GeM: A coarse-grained electron model for fast and accurate protein electrostatics prediction
X Guan, I Leven, F Heidar-Zadeh, T Head-Gordon
Journal of chemical information and modeling 61 (9), 4357-4369, 2021
102021
Leak proof PDBBind: A reorganized dataset of protein-ligand complexes for more generalizable binding affinity prediction
J Li, X Guan, O Zhang, K Sun, Y Wang, D Bagni, T Head-Gordon
arXiv preprint arXiv:2308.09639, 2023
92023
Learning to make chemical predictions: the interplay of feature representation, data, and machine learning methods. Chem 6: 1527–1542
M Haghighatlari, J Li, F Heidar-Zadeh, Y Liu, X Guan, T Head-Gordon
52020
Leak Proof PDBBind: A Reorganized Dataset of Protein-Ligand Complexes for More Generalizable Binding Affinity Prediction. arXiv 2023
J Li, X Guan, O Zhang, K Sun, Y Wang, D Bagni, T Head-Gordon
arXiv preprint arXiv:2308.09639, 0
5
M-Chem: a modular software package for molecular simulation that spans scientific domains
J Witek, JP Heindel, X Guan, I Leven, H Hao, P Naullage, A LaCour, ...
Molecular physics 121 (9-10), e2129500, 2023
42023
Using machine learning to go beyond potential energy surface benchmarking for chemical reactivity
X Guan, JP Heindel, T Ko, C Yang, T Head-Gordon
Nature Computational Science 3 (11), 965-974, 2023
32023
Using diffusion maps to analyze reaction dynamics for a hydrogen combustion benchmark dataset
T Ko, JP Heindel, X Guan, T Head-Gordon, DB Williams-Young, C Yang
Journal of Chemical Theory and Computation 19 (17), 5872-5885, 2023
32023
Mining for Potent Inhibitors through Artificial Intelligence and Physics: A Unified Methodology for Ligand Based and Structure Based Drug Design
J Li, O Zhang, K Sun, Y Wang, X Guan, D Bagni, M Haghighatlari, ...
Journal of Chemical Information and Modeling, 2024
2024
Deep Learning of ab initio Hessians for Transition State Optimization
ECY Yuan, A Kumar, X Guan, ED Hermes, AS Rosen, J Zádor, ...
arXiv preprint arXiv:2405.02247, 2024
2024
Beyond potential energy surface benchmarking: a complete application of machine learning to chemical reactivity
X Guan, J Heindel, T Ko, C Yang, T Head-Gordon
arXiv preprint arXiv:2306.08273, 2023
2023
Reinforcement Learning with Real-time Docking of 3D Structures to Cover Chemical Space: Mining for Potent SARS-CoV-2 Main Protease Inhibitors
J Li, O Zhang, FL Kearns, M Haghighatlari, C Parks, X Guan, I Leven, ...
arXiv preprint arXiv:2110.01806, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–16