Machine learning for molecular and materials science KT Butler, DW Davies, H Cartwright, O Isayev, A Walsh Nature 559 (7715), 547-555, 2018 | 3299 | 2018 |
ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost JS Smith, O Isayev, AE Roitberg Chemical science 8 (4), 3192-3203, 2017 | 1651 | 2017 |
Deep reinforcement learning for de novo drug design M Popova, O Isayev, A Tropsha Science advances 4 (7), eaap7885, 2018 | 1148 | 2018 |
Less is more: Sampling chemical space with active learning JS Smith, B Nebgen, N Lubbers, O Isayev, AE Roitberg The Journal of chemical physics 148 (24), 2018 | 663 | 2018 |
QSAR without borders EN Muratov, J Bajorath, RP Sheridan, IV Tetko, D Filimonov, V Poroikov, ... Chemical Society Reviews 49 (11), 3525-3564, 2020 | 634 | 2020 |
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning JS Smith, BT Nebgen, R Zubatyuk, N Lubbers, C Devereux, K Barros, ... Nature communications 10 (1), 2903, 2019 | 613 | 2019 |
Universal fragment descriptors for predicting properties of inorganic crystals O Isayev, C Oses, C Toher, E Gossett, S Curtarolo, A Tropsha Nature communications 8 (1), 15679, 2017 | 609 | 2017 |
Best practices in machine learning for chemistry N Artrith, KT Butler, FX Coudert, S Han, O Isayev, A Jain, A Walsh Nature chemistry 13 (6), 505-508, 2021 | 311 | 2021 |
Materials cartography: representing and mining materials space using structural and electronic fingerprints O Isayev, D Fourches, EN Muratov, C Oses, K Rasch, A Tropsha, ... Chemistry of Materials 27 (3), 735-743, 2015 | 303 | 2015 |
ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules JS Smith, O Isayev, AE Roitberg Scientific data 4 (1), 1-8, 2017 | 276 | 2017 |
Extending the applicability of the ANI deep learning molecular potential to sulfur and halogens C Devereux, JS Smith, KK Huddleston, K Barros, R Zubatyuk, O Isayev, ... Journal of Chemical Theory and Computation 16 (7), 4192-4202, 2020 | 261 | 2020 |
TorchANI: a free and open source PyTorch-based deep learning implementation of the ANI neural network potentials X Gao, F Ramezanghorbani, O Isayev, JS Smith, AE Roitberg Journal of chemical information and modeling 60 (7), 3408-3415, 2020 | 225 | 2020 |
Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network R Zubatyuk, JS Smith, J Leszczynski, O Isayev Science advances 5 (8), eaav6490, 2019 | 201 | 2019 |
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules JS Smith, R Zubatyuk, B Nebgen, N Lubbers, K Barros, AE Roitberg, ... Scientific data 7 (1), 134, 2020 | 186 | 2020 |
A critical overview of computational approaches employed for COVID-19 drug discovery EN Muratov, R Amaro, CH Andrade, N Brown, S Ekins, D Fourches, ... Chemical Society Reviews 50 (16), 9121-9151, 2021 | 162 | 2021 |
MolecularRNN: Generating realistic molecular graphs with optimized properties M Popova, M Shvets, J Oliva, O Isayev arXiv preprint arXiv:1905.13372, 2019 | 157 | 2019 |
The transformational role of GPU computing and deep learning in drug discovery M Pandey, M Fernandez, F Gentile, O Isayev, A Tropsha, AC Stern, ... Nature Machine Intelligence 4 (3), 211-221, 2022 | 155 | 2022 |
Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20 O Isayev, L Gorb, M Qasim, J Leszczynski The Journal of Physical Chemistry B 112 (35), 11005-11013, 2008 | 132 | 2008 |
Discovering a transferable charge assignment model using machine learning AE Sifain, N Lubbers, BT Nebgen, JS Smith, AY Lokhov, O Isayev, ... The journal of physical chemistry letters 9 (16), 4495-4501, 2018 | 123 | 2018 |
Effect of solvation on the vertical ionization energy of thymine: From microhydration to bulk D Ghosh, O Isayev, LV Slipchenko, AI Krylov The Journal of Physical Chemistry A 115 (23), 6028-6038, 2011 | 120 | 2011 |