关注
Hande Celikkanat
标题
引用次数
引用次数
年份
Self-Organized Flocking with a Mobile Robot Swarm
AE Turgut, H Celikkanat, F Gokce, E Sahin
International Conference on Autonomous Agents and Multiagent Systems (AAMAS …, 2008
3992008
Steering self-organized robot flocks through externally guided individuals
H Celikkanat, E Şahin
Neural Computing and Applications 19, 849-865, 2010
1122010
Kobot: A mobile robot designed specifically for swarm robotics research
AE Turgut, F Gokce, H Celikkanat, L Bayindir, E Sahin
Middle East Technical University, Ankara, Turkey, METU-CENG-TR Tech. Rep 5 …, 2007
512007
Parental scaffolding as a bootstrapping mechanism for learning grasp affordances and imitation skills
E Ugur, Y Nagai, H Celikkanat, E Oztop
Robotica 33 (5), 1163-1180, 2015
382015
Predicting prosodic prominence from text with pre-trained contextualized word representations
A Talman, A Suni, H Celikkanat, S Kakouros, J Tiedemann, M Vainio
arXiv preprint arXiv:1908.02262, 2019
332019
Learning context on a humanoid robot using incremental latent dirichlet allocation
H Celikkanat, G Orhan, N Pugeault, F Guerin, E Şahin, S Kalkan
IEEE Transactions on Cognitive and Developmental Systems 8 (1), 42-59, 2015
302015
A probabilistic concept web on a humanoid robot
H Celikkanat, G Orhan, S Kalkan
IEEE Transactions on Autonomous Mental Development, 2014
282014
Modeling phase transition in self-organized mobile robot flocks
AE Turgut, C Huepe, H Çelikkanat, F Gökçe, E Şahin
International Conference on Ant Colony Optimization and Swarm Intelligence …, 2008
232008
Learning to grasp with parental scaffolding
E Ugur, H Celikkanat, E Şahin, Y Nagai, E Oztop
2011 11th IEEE-RAS International Conference on Humanoid Robots, 480-486, 2011
172011
Guiding a robot flock via informed robots
H Celikkanat, AE Turgut, E Şahin
Distributed autonomous robotic systems 8, 215-225, 2009
162009
Learning and Using Context on a Humanoid Robot Using Latent Dirichlet Allocation
H Celikkanat, G Orhan, N Pugeault, F Guerin, E Sahin, S Kalkan
IEEE ICDL-Epirob 2014, 2014
122014
Are multilingual neural machine translation models better at capturing linguistic features?
D Marecek, H Celikkanat, M Silfverberg, V Ravishankar, J Tiedemann
Prague Bull. Math. Linguistics 115, 143-162, 2020
112020
A deep incremental boltzmann machine for modeling context in robots
FI Doğan, H Celikkanat, S Kalkan
2018 IEEE International Conference on Robotics and Automation (ICRA), 2411-2416, 2018
112018
Optimization of self-organized flocking of a robot swarm via evolutionary strategies
H Celikkanat
Computer and Information Sciences, 2008. ISCIS'08. 23rd International …, 2008
82008
Controlling the imprint of passivization and negation in contextualized representations
H Celikkanat, S Virpioja, J Tiedemann, M Apidianaki
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting …, 2020
72020
Decoding emotional valence from electroencephalographic rhythmic activity
H Celikkanat, H Moriya, T Ogawa, JP Kauppi, M Kawanabe, A Hyvärinen
International Conference of the IEEE Engineering in Medicine and Biology …, 2017
72017
A closer look at parameter contributions when training neural language and translation models
R Vázquez, H Celikkanat, V Ravishankar, M Creutz, J Tiedemann
International Conference on Computational Linguistics, 4788-4800, 2022
52022
Integrating spatial concepts into a probabilistic concept web
H Celikkanat, E Şahin, S Kalkan
2015 International Conference on Advanced Robotics (ICAR), 259-264, 2015
52015
Uncertainty-aware natural language inference with stochastic weight averaging
A Talman, H Celikkanat, S Virpioja, M Heinonen, J Tiedemann
arXiv preprint arXiv:2304.04726, 2023
42023
On the differences between BERT and MT encoder spaces and how to address them in translation tasks
R Vázquez, H Celikkanat, M Creutz, J Tiedemann
Proceedings of the 59th Annual Meeting of the Association for Computational …, 2021
42021
系统目前无法执行此操作,请稍后再试。
文章 1–20