受强制性开放获取政策约束的文章 - Ran Gu了解详情
无法在其他位置公开访问的文章:3 篇
Fpl-uda: Filtered pseudo label-based unsupervised cross-modality adaptation for vestibular schwannoma segmentation
J Wu, R Gu, G Dong, G Wang, S Zhang
2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 1-5, 2022
强制性开放获取政策: 国家自然科学基金委员会
S 3 R: Shape and Semantics-based Selective Regularization for Explainable Continual Segmentation across Multiple Sites
J Zhang*, R Gu*, P Xue, M Liu, H Zheng, Y Zheng, L Ma, G Wang, L Gu
IEEE Transactions on Medical Imaging, 2023
强制性开放获取政策: 国家自然科学基金委员会
Upl-tta: Uncertainty-aware pseudo label guided fully test time adaptation for fetal brain segmentation
J Wu, R Gu, T Lu, S Zhang, G Wang
International Conference on Information Processing in Medical Imaging, 237-249, 2023
强制性开放获取政策: 国家自然科学基金委员会
可在其他位置公开访问的文章:13 篇
CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation
R Gu, G Wang, T Song, R Huang, M Aertsen, J Deprest, S Ourselin, ...
IEEE transactions on medical imaging 40 (2), 699-711, 2020
强制性开放获取政策: 国家自然科学基金委员会, UK Engineering and Physical Sciences Research …
Contrastive semi-supervised learning for domain adaptive segmentation across similar anatomical structures
R Gu, J Zhang, G Wang, W Lei, T Song, X Zhang, K Li, S Zhang
IEEE Transactions on Medical Imaging 42 (1), 245-256, 2022
强制性开放获取政策: 国家自然科学基金委员会
Automatic segmentation of organs-at-risk from head-and-neck CT using separable convolutional neural network with hard-region-weighted loss
W Lei, H Mei, Z Sun, S Ye, R Gu, H Wang, R Huang, S Zhang, S Zhang, ...
Neurocomputing 442, 184-199, 2021
强制性开放获取政策: 国家自然科学基金委员会
PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation
G Wang, X Luo, R Gu, S Yang, Y Qu, S Zhai, Q Zhao, K Li, S Zhang
Computer Methods and Programs in Biomedicine 231, 107398, 2023
强制性开放获取政策: 国家自然科学基金委员会
Automatic segmentation of gross target volume of nasopharynx cancer using ensemble of multiscale deep neural networks with spatial attention
H Mei, W Lei, R Gu, S Ye, Z Sun, S Zhang, G Wang
Neurocomputing 438, 211-222, 2021
强制性开放获取政策: 国家自然科学基金委员会
Domain composition and attention for unseen-domain generalizable medical image segmentation
R Gu, J Zhang, R Huang, W Lei, G Wang, S Zhang
Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th …, 2021
强制性开放获取政策: 国家自然科学基金委员会
Contrastive learning of relative position regression for one-shot object localization in 3D medical images
W Lei, W Xu, R Gu, H Fu, S Zhang, S Zhang, G Wang
Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th …, 2021
强制性开放获取政策: 国家自然科学基金委员会
CDDSA: Contrastive domain disentanglement and style augmentation for generalizable medical image segmentation
R Gu, G Wang, J Lu, J Zhang, W Lei, Y Chen, W Liao, S Zhang, K Li, ...
Medical Image Analysis 89, 102904, 2023
强制性开放获取政策: 国家自然科学基金委员会
One-shot weakly-supervised segmentation in 3D medical images
W Lei, Q Su, T Jiang, R Gu, N Wang, X Liu, G Wang, X Zhang, S Zhang
IEEE Transactions on Medical Imaging, 2023
强制性开放获取政策: 国家自然科学基金委员会
Comprehensive importance-based selective regularization for continual segmentation across multiple sites
J Zhang*, R Gu*, G Wang, L Gu
International Conference on Medical Image Computing and Computer-Assisted …, 2021
强制性开放获取政策: 国家自然科学基金委员会
Upl-sfda: Uncertainty-aware pseudo label guided source-free domain adaptation for medical image segmentation
J Wu, G Wang, R Gu, T Lu, Y Chen, W Zhu, T Vercauteren, S Ourselin, ...
IEEE transactions on medical imaging, 2023
强制性开放获取政策: 国家自然科学基金委员会, UK Engineering and Physical Sciences Research …
Learning towards synchronous network memorizability and generalizability for continual segmentation across multiple sites
J Zhang, P Xue, R Gu, Y Gu, M Liu, Y Pan, Z Cui, J Huang, L Ma, D Shen
International Conference on Medical Image Computing and Computer-Assisted …, 2022
强制性开放获取政策: 国家自然科学基金委员会
SS-CADA: A Semi-Supervised Cross-Anatomy Domain Adaptation for Coronary Artery Segmentation
J Zhang*, R Gu*, G Wang, H Xie, L Gu
arXiv preprint arXiv:2105.02674, 2021
强制性开放获取政策: 国家自然科学基金委员会
出版信息和资助信息由计算机程序自动确定