Parallel metaheuristics: recent advances and new trends E Alba, G Luque, S Nesmachnow International Transactions in Operational Research 20 (1), 1-48, 2013 | 362 | 2013 |
A survey on parallel ant colony optimization M Pedemonte, S Nesmachnow, H Cancela Applied Soft Computing 11 (8), 5181-5197, 2011 | 280 | 2011 |
An overview of metaheuristics: accurate and efficient methods for optimisation S Nesmachnow International Journal of Metaheuristics 3 (4), 320-347, 2014 | 266 | 2014 |
Energy-aware scheduling on multicore heterogeneous grid computing systems S Nesmachnow, B Dorronsoro, JE Pecero, P Bouvry Journal of grid computing 11, 653-680, 2013 | 114 | 2013 |
Cluster-UY: collaborative scientific high performance computing in Uruguay S Nesmachnow, S Iturriaga Supercomputing: 10th International Conference on Supercomputing in Mexico …, 2019 | 90 | 2019 |
A parallel micro evolutionary algorithm for heterogeneous computing and grid scheduling S Nesmachnow, H Cancela, E Alba Applied Soft Computing 12 (2), 626-639, 2012 | 90 | 2012 |
Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm J Toutouh, S Nesmachnow, E Alba Cluster computing 16, 435-450, 2013 | 78 | 2013 |
Granular physics in low-gravity environments using discrete element method G Tancredi, A Maciel, L Heredia, P Richeri, S Nesmachnow Monthly Notices of the Royal Astronomical Society 420 (4), 3368-3380, 2012 | 74 | 2012 |
Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República S Nesmachnow Revista de la Asociación de Ingenieros del Uruguay 61 (1), 12-15, 2010 | 71 | 2010 |
A hierarchical approach for energy-efficient scheduling of large workloads in multicore distributed systems B Dorronsoro, S Nesmachnow, J Taheri, AY Zomaya, EG Talbi, P Bouvry Sustainable Computing: Informatics and Systems 4 (4), 252-261, 2014 | 69 | 2014 |
Heterogeneous computing scheduling with evolutionary algorithms S Nesmachnow, H Cancela, E Alba Soft Computing 15, 685-701, 2010 | 67 | 2010 |
Towards a cloud computing paradigm for big data analysis in smart cities R Massobrio, S Nesmachnow, A Tchernykh, A Avetisyan, G Radchenko Programming and Computer Software 44, 181-189, 2018 | 64 | 2018 |
Online bi-objective scheduling for IaaS clouds ensuring quality of service A Tchernykh, L Lozano, U Schwiegelshohn, P Bouvry, JE Pecero, ... Journal of Grid Computing 14, 5-22, 2016 | 64 | 2016 |
Exact and heuristic approaches for multi-objective garbage accumulation points location in real scenarios DG Rossit, J Toutouh, S Nesmachnow Waste Management 105, 467-481, 2020 | 60 | 2020 |
Efficient heuristics for profit optimization of virtual cloud brokers S Nesmachnow, S Iturriaga, B Dorronsoro IEEE computational intelligence magazine 10 (1), 33-43, 2015 | 54 | 2015 |
Multiobjective evolutionary optimization of traffic flow and pollution in Montevideo, Uruguay M Péres, G Ruiz, S Nesmachnow, AC Olivera Applied Soft Computing 70, 472-485, 2018 | 43 | 2018 |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm S Nesmachnow, R Massobrio, E Arreche, C Mumford, AC Olivera, ... International Journal of Transportation Science and Technology 8 (1), 53-67, 2019 | 41 | 2019 |
Energy efficient scheduling in heterogeneous systems with a parallel multiobjective local search S Iturriaga, S Nesmachnow, D Bernabe, P Bouvry Computing and Informatics 32 (2), 273-294, 2013 | 38 | 2013 |
Urban mobility data analysis for public transportation systems: a case study in Montevideo, Uruguay R Massobrio, S Nesmachnow Applied Sciences 10 (16), 5400, 2020 | 37 | 2020 |
A distributed platform for big data analysis in smart cities: combining intelligent transportation systems and socioeconomic data for Montevideo, Uruguay S Nesmachnow, S Baña, R Massobrio EAI Endorsed Transactions on Smart Cities 2 (5), 2017 | 37 | 2017 |