关注
Renguang Zuo
标题
引用次数
引用次数
年份
Support vector machine: A tool for mapping mineral prospectivity
R Zuo, EJM Carranza
Computers & Geosciences 37 (12), 1967-1975, 2011
4102011
Fractal/multifractal modeling of geochemical data: A review
R Zuo, J Wang
Journal of Geochemical Exploration 164, 33-41, 2016
3142016
Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt …
R Zuo
Journal of Geochemical Exploration 111 (1-2), 13-22, 2011
2902011
Deep learning and its application in geochemical mapping
R Zuo, Y Xiong, J Wang, EJM Carranza
Earth-science reviews 192, 1-14, 2019
2672019
Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China
R Zuo, Q Cheng, FP Agterberg, Q Xia
Journal of Geochemical Exploration 101 (3), 225-235, 2009
2502009
Recognition of geochemical anomalies using a deep autoencoder network
Y Xiong, R Zuo
Computers & Geosciences 86, 75-82, 2016
2312016
Application of fractal models to characterization of vertical distribution of geochemical element concentration
R Zuo, Q Cheng, Q Xia
Journal of Geochemical Exploration 102 (1), 37-43, 2009
1812009
Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization
R Zuo, Q Xia, H Wang
Applied geochemistry 28, 202-211, 2013
1752013
Machine learning of mineralization-related geochemical anomalies: A review of potential methods
R Zuo
Natural Resources Research 26, 457-464, 2017
1712017
A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas
R Zuo, Q Xia, D Zhang
Applied geochemistry 33, 165-172, 2013
1712013
Spatial analysis and visualization of exploration geochemical data
R Zuo, EJM Carranza, J Wang
Earth-Science Reviews 158, 9-18, 2016
1492016
Mapping mineral prospectivity through big data analytics and a deep learning algorithm
Y Xiong, R Zuo, EJM Carranza
Ore Geology Reviews 102, 811-817, 2018
1482018
Big data analytics of identifying geochemical anomalies supported by machine learning methods
R Zuo, Y Xiong
Natural Resources Research 27, 5-13, 2018
1392018
Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China
R Zuo
Applied geochemistry 26, S271-S273, 2011
1392011
Identification of weak anomalies: A multifractal perspective
R Zuo, J Wang, G Chen, M Yang
Journal of Geochemical Exploration 148, 12-24, 2015
1342015
Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China
R Zuo, Z Zhang, D Zhang, EJM Carranza, H Wang
Ore Geology Reviews 71, 502-515, 2015
1282015
Fractal/multifractal modelling of geochemical exploration data
R Zuo, EJM Carranza, Q Cheng
Journal of Geochemical Exploration 122, 1-3, 2012
1212012
Random-Drop Data Augmentation of Deep Convolutional Neural Network for Mineral Prospectivity Mapping
T Li, R Zuo, Y Xiong, Y Peng
Natural Resources Research 30, 27-38, 2021
1132021
A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
ZJ Zhang, RG Zuo, YH Xiong
Science China Earth Sciences 59, 556-572, 2016
1072016
GIS-based rare events logistic regression for mineral prospectivity mapping
Y Xiong, R Zuo
Computers & Geosciences 111, 18-25, 2018
1042018
系统目前无法执行此操作,请稍后再试。
文章 1–20