关注
Boris van Breugel
Boris van Breugel
在 cam.ac.uk 的电子邮件经过验证
标题
引用次数
引用次数
年份
How faithful is your synthetic data? Sample-level metrics for evaluating and auditing generative models
A Alaa, B Van Breugel, ES Saveliev, M van der Schaar
International Conference on Machine Learning, 290-306, 2022
1422022
DECAF: Generating fair synthetic data using causally-aware generative networks
B Van Breugel, T Kyono, J Berrevoets, M Van der Schaar
Advances in Neural Information Processing Systems 34, 22221-22233, 2021
782021
Stereotype and skew: Quantifying gender bias in pre-trained and fine-tuned language models
D de Vassimon Manela, D Errington, T Fisher, B van Breugel, P Minervini
Proceedings of the 16th Conference of the European Chapter of the …, 2021
742021
Membership Inference Attacks against Synthetic Data through Overfitting Detection
B van Breugel, H Sun, Z Qian, M van der Schaar
Proceedings of the 26th International Conference on Artificial Intelligence …, 2023
332023
Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic Data
B van Breugel, M van der Schaar
arXiv preprint arXiv:2304.03722, 2023
192023
Synthetic Data, Real Errors: How (Not) to Publish and Use Synthetic Data
B van Breugel, Z Qian, M van der Schaar
Proceedings of the 40th International Conference on Machine Learning 202 …, 2023
152023
What is Flagged in Uncertainty Quantification? Latent Density Models for Uncertainty Categorization
H Sun, B van Breugel, J Crabbé, N Seedat, M van der Schaar
Advances in Neural Information Processing Systems 36, 2023
7*2023
How faithful is your synthetic data
AM Alaa, B van Breugel, E Saveliev, M van der Schaar
Sample-Level Metrics for Evaluating and Auditing Generative Models. arXiv, 2022
72022
Why Tabular Foundation Models Should Be a Research Priority
B van Breugel, M van der Schaar
International Conference on Machine Learning, 2024
62024
Can You Rely on Your Model Evaluation? Improving Model Evaluation with Synthetic Test Data
B van Breugel, N Seedat, F Imrie, M van der Schaar
Advances in Neural Information Processing Systems 36, 2023
62023
Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in ultra low-data regimes
N Seedat, N Huynh, B van Breugel, M van der Schaar
International Conference on Machine Learning, 2024
22024
Practical Approaches for Fair Learning with Multitype and Multivariate Sensitive Attributes
T Liu, AJ Chan, B van Breugel, M van der Schaar
NeurIPS 2022 Workshop on Algorithmic Fairness through the Lens of Causality …, 2022
22022
Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion Models
Y Li, B van Breugel, M van der Schaar
International Conference on Learning Representations, 2024
12024
RadEdit: stress-testing biomedical vision models via diffusion image editing
F Pérez-García, S Bond-Taylor, PP Sanchez, B van Breugel, DC Castro, ...
arXiv preprint arXiv:2312.12865, 2023
12023
The Spherical Grasshopper Problem
B van Breugel
arXiv preprint arXiv:2307.05359, 2023
2023
Position: Why Tabular Foundation Models Should Be a Research Priority
B van Breugel, M van der Schaar
Forty-first International Conference on Machine Learning, 0
Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes
N Seedat, N Huynh, B van Breugel, M van der Schaar
Forty-first International Conference on Machine Learning, 0
系统目前无法执行此操作,请稍后再试。
文章 1–17