A Consistent and Differentiable Lp Canonical Calibration Error Estimator T Popordanoska, R Sayer, MB Blaschko Advances in Neural Information Processing Systems, 2022, 2022 | 25 | 2022 |
Machine Guides, Human Supervises: Interactive Learning with Global Explanations T Popordanoska, M Kumar, S Teso arXiv preprint arXiv:2009.09723, 2020 | 17 | 2020 |
Dice Semimetric Losses: Optimizing the Dice Score with Soft Labels Z Wang, T Popordanoska, J Bertels, R Lemmens, MB Blaschko International Conference on Medical Image Computing and Computer Assisted …, 2023 | 10 | 2023 |
On the relationship between calibrated predictors and unbiased volume estimation T Popordanoska, J Bertels, D Vandermeulen, F Maes, MB Blaschko Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th …, 2021 | 10 | 2021 |
Beyond classification: Definition and density-based estimation of calibration in object detection T Popordanoska, A Tiulpin, M Blaschko Proceedings WACV 2024, 2023 | 3 | 2023 |
KULeuven at LeQua 2022: model calibration in quantification learning T Popordanoska, M Blaschko Proceedings of the Working Notes of CLEF 2022-Conference and Labs of the …, 2022 | 3 | 2022 |
Toward Machine-Guided, Human-Initiated Explanatory Interactive Learning T Popordanoska, M Kumar, S Teso arXiv preprint arXiv:2007.10018, 2020 | 2 | 2020 |
Consistent and Asymptotically Unbiased Estimation of Proper Calibration Errors T Popordanoska, SG Gruber, A Tiulpin, F Buettner, MB Blaschko International Conference on Artificial Intelligence and Statistics, 3466-3474, 2024 | | 2024 |
Estimating calibration error under label shift without labels T Popordanoska, G Radevski, T Tuytelaars, MB Blaschko arXiv preprint arXiv:2312.08586, 2023 | | 2023 |
To trust or not to trust: Assessing calibration error under covariate shift without labels T Popordanoska, A Tiulpin, M Blaschko ICCV workshops proceedings, 2023 | | 2023 |
On confidence intervals for precision matrices and the eigendecomposition of covariance matrices T Popordanoska, A Tiulpin, W Bounliphone, MB Blaschko arXiv preprint arXiv:2208.11977, 2022 | | 2022 |
Distribution-independent confidence intervals for the eigendecomposition of covariance matrices via the eigenvalue-eigenvector identity T Popordanoska, A Tiulpin, W Bounliphone, M Blaschko ICML 2021 workshop on distribution-free uncertainty quantification, Date …, 2021 | | 2021 |