关注
Jie Ren
Jie Ren
在 sjtu.edu.cn 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A unified approach to interpreting and boosting adversarial transferability
X Wang, J Ren, S Lin, X Zhu, Y Wang, Q Zhang
arXiv preprint arXiv:2010.04055, 2020
922020
Explaining neural networks semantically and quantitatively
R Chen, H Chen, J Ren, G Huang, Q Zhang
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
652019
Interpretable complex-valued neural networks for privacy protection
L Xiang, H Ma, H Zhang, Y Zhang, J Ren, Q Zhang
arXiv preprint arXiv:1901.09546, 2019
422019
A unified game-theoretic interpretation of adversarial robustness
J Ren, D Zhang, Y Wang, L Chen, Z Zhou, Y Chen, X Cheng, X Wang, ...
arXiv preprint arXiv:2103.07364, 2021
262021
Defining and quantifying the emergence of sparse concepts in dnns
J Ren, M Li, Q Chen, H Deng, Q Zhang
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2023
242023
Can we faithfully represent masked states to compute shapley values on a dnn?
J Ren, Z Zhou, Q Chen, Q Zhang
arXiv preprint arXiv:2105.10719, 2021
222021
Interpreting and disentangling feature components of various complexity from DNNs
J Ren, M Li, Z Liu, Q Zhang
International Conference on Machine Learning, 8971-8981, 2021
212021
Mining interpretable AOG representations from convolutional networks via active question answering
Q Zhang, J Ren, G Huang, R Cao, YN Wu, SC Zhu
IEEE transactions on pattern analysis and machine intelligence 43 (11), 3949 …, 2020
162020
Towards a unified game-theoretic view of adversarial perturbations and robustness
J Ren, D Zhang, Y Wang, L Chen, Z Zhou, Y Chen, X Cheng, X Wang, ...
Advances in Neural Information Processing Systems 34, 3797-3810, 2021
152021
Proving common mechanisms shared by twelve methods of boosting adversarial transferability
Q Zhang, X Wang, J Ren, X Cheng, S Lin, Y Wang, X Zhu
arXiv preprint arXiv:2207.11694, 2022
112022
Towards axiomatic, hierarchical, and symbolic explanation for deep models
J Ren, M Li, Q Chen, H Deng, Q Zhang
112021
Identifying semantic induction heads to understand in-context learning
J Ren, Q Guo, H Yan, D Liu, X Qiu, D Lin
arXiv preprint arXiv:2402.13055, 2024
92024
Trap of feature diversity in the learning of mlps
D Liu, S Wang, J Ren, K Wang, S Yin, H Deng, Q Zhang
arXiv preprint arXiv:2112.00980, 2021
62021
Game-theoretic understanding of adversarially learned features
J Ren, D Zhang, Y Wang, L Chen, Z Zhou, X Cheng, X Wang, Y Chen, ...
arXiv preprint arXiv:2103.07364, 2021
62021
Interpretability of neural networks based on game-theoretic interactions
H Zhou, J Ren, H Deng, X Cheng, J Zhang, Q Zhang
Machine Intelligence Research, 1-22, 2024
32024
Towards theoretical analysis of transformation complexity of ReLU DNNs
J Ren, M Li, M Zhou, SH Chan, Q Zhang
International Conference on Machine Learning, 18537-18558, 2022
22022
Proceedings of ICML 2021 Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI
Q Zhang, T Han, L Fan, Z Zhu, H Su, YN Wu, J Ren, H Zhang
arXiv preprint arXiv:2107.08821, 2021
2021
Towards a Game-Theoretic View of Baseline Values in the Shapley Value
J Ren, Z Zhou, Q Chen, Q Zhang
Visualizing the Emergence of Primitive Interactions During the Training of DNNs
J Ren, X Zheng, J Liu, Q Zhang
系统目前无法执行此操作,请稍后再试。
文章 1–19