Mopo: Model-based offline policy optimization T Yu, G Thomas, L Yu, S Ermon, JY Zou, S Levine, C Finn, T Ma Advances in Neural Information Processing Systems 33, 14129-14142, 2020 | 751 | 2020 |
Value iteration networks A Tamar, Y Wu, G Thomas, S Levine, P Abbeel Advances in neural information processing systems 29, 2016 | 739 | 2016 |
Learning robotic assembly from cad G Thomas, M Chien, A Tamar, JA Ojea, P Abbeel 2018 IEEE International Conference on Robotics and Automation (ICRA), 3524-3531, 2018 | 176 | 2018 |
Learning from the hindsight plan—episodic mpc improvement A Tamar, G Thomas, T Zhang, S Levine, P Abbeel 2017 IEEE International Conference on Robotics and Automation (ICRA), 336-343, 2017 | 79 | 2017 |
Safe reinforcement learning by imagining the near future G Thomas, Y Luo, T Ma Advances in Neural Information Processing Systems 34, 13859-13869, 2021 | 65 | 2021 |
Model-based adversarial meta-reinforcement learning Z Lin, G Thomas, G Yang, T Ma Advances in Neural Information Processing Systems 33, 10161-10173, 2020 | 49 | 2020 |
A model-based approach for sample-efficient multi-task reinforcement learning NC Landolfi, G Thomas, T Ma arXiv preprint arXiv:1907.04964, 2019 | 18 | 2019 |
A comprehensive guide to machine learning S Nasiriany, G Thomas, W Wang, A Yang, J Listgarten, A Sahai Department of Electrical Engineering and Computer Sciences University of …, 2019 | 17 | 2019 |
Plex: Making the most of the available data for robotic manipulation pretraining G Thomas, CA Cheng, R Loynd, FV Frujeri, V Vineet, M Jalobeanu, ... Conference on Robot Learning, 2624-2641, 2023 | 7 | 2023 |
Mathematics for Machine Learning G Thomas University of California, Berkeley, 2018 | 2 | 2018 |
HEETR: Pretraining for Robotic Manipulation on Heteromodal Data G Thomas, A Kolobov, CA Cheng, V Vineet, M Jalobeanu CoRL 2022 Workshop on Pre-training Robot Learning, 0 | | |