Over-optimistic evaluation and reporting of novel cluster algorithms: An illustrative study T Ullmann, A Beer, M Hünemörder, T Seidl, AL Boulesteix Advances in Data Analysis and Classification 17 (1), 211-238, 2023 | 10 | 2023 |
Fatbird: A tool for flight and trajectories analyses of birds D Kazempour, A Beer, F Herzog, D Kaltenthaler, JY Lohrer, T Seidl 2018 IEEE 14th International Conference on e-Science (e-Science), 75-82, 2018 | 8 | 2018 |
Luck-linear correlation clustering using cluster algorithms and a knn based distance function A Beer, D Kazempour, L Stephan, T Seidl Proceedings of the 31st International Conference on Scientific and …, 2019 | 6 | 2019 |
MORe++: k-Means Based Outlier Removal on High-Dimensional Data A Beer, J Lauterbach, T Seidl Similarity Search and Applications: 12th International Conference, SISAP …, 2019 | 6 | 2019 |
A Generator for Subspace Clusters. A Beer, NS Schüler, T Seidl LWDA, 69-73, 2019 | 6 | 2019 |
Connecting the Dots--Density-Connectivity Distance unifies DBSCAN, k-Center and Spectral Clustering A Beer, A Draganov, E Hohma, P Jahn, CMM Frey, I Assent Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023 | 5 | 2023 |
KISS-A fast kNN-based Importance Score for Subspaces. A Beer, E Allerborn, V Hartmann, T Seidl EDBT, 391-396, 2021 | 5 | 2021 |
PARADISO: an interactive approach of parameter selection for the mean shift algorithm D Kazempour, A Beer, JY Lohrer, D Kaltenthaler, T Seidl Proceedings of the 30th International Conference on Scientific and …, 2018 | 5 | 2018 |
SCAR: spectral clustering accelerated and robustified E Hohma, CMM Frey, A Beer, T Seidl Proceedings of the VLDB Endowment 15 (11), 3031-3044, 2022 | 4 | 2022 |
I fold you so! An internal evaluation measure for arbitrary oriented subspace clustering D Kazempour, A Beer, P Kröger, T Seidl 2020 International Conference on Data Mining Workshops (ICDMW), 316-323, 2020 | 4 | 2020 |
Rock–Let the points roam to their clusters themselves A Beer, D Kazempour, T Seidl Proceedings of the 22nd International Conference on Extending Database …, 2019 | 4 | 2019 |
Cluster Flow-an Advanced Concept for Ensemble-Enabling, Interactive Clustering S Obermeier, A Beer, F Wahl, T Seidl Gesellschaft für Informatik, Bonn, 2021 | 3 | 2021 |
Graph Ordering and Clustering: A Circular Approach A Beer, T Seidl Proceedings of the 31st International Conference on Scientific and …, 2019 | 3 | 2019 |
Chain-detection for DBSCAN J Held, A Beer, T Seidl Gesellschaft für Informatik, Bonn, 2019 | 3 | 2019 |
LUCKe—Connecting Clustering and Correlation Clustering A Beer, L Stephan, T Seidl 2021 International Conference on Data Mining Workshops (ICDMW), 431-440, 2021 | 2 | 2021 |
Orderings of Data-More Than a Tripping Hazard: Visionary A Beer, V Hartmann, T Seidl Proceedings of the 32nd International Conference on Scientific and …, 2020 | 2 | 2020 |
Grace-Limiting the Number of Grid Cells for Clustering High-Dimensional Data. A Beer, D Kazempour, J Busch, A Tekles, T Seidl LWDA, 11-22, 2020 | 2 | 2020 |
Angle-Based Clustering A Beer, D Seeholzer, NS Schüler, T Seidl Similarity Search and Applications: 13th International Conference, SISAP …, 2020 | 2 | 2020 |
Chain-detection Between Clusters J Held, A Beer, T Seidl Datenbank-Spektrum 19 (3), 219-230, 2019 | 2 | 2019 |
CODEC-Detecting Linear Correlations in Dense Clusters using coMAD-based PCA. MAX Hünemörder, A Beer, D Kazempour, T Seidl LWDA, 111-114, 2019 | 2 | 2019 |