Survey of multifidelity methods in uncertainty propagation, inference, and optimization B Peherstorfer, K Willcox, M Gunzburger SIAM Review 60 (3), 550-591, 2018 | 998 | 2018 |
Data-driven operator inference for nonintrusive projection-based model reduction B Peherstorfer, K Willcox Computer Methods in Applied Mechanics and Engineering 306, 196-215, 2016 | 393 | 2016 |
Projection-based model reduction: Formulations for physics-based machine learning R Swischuk, L Mainini, B Peherstorfer, K Willcox Computers & Fluids 179, 704-717, 2019 | 347 | 2019 |
Optimal model management for multifidelity Monte Carlo estimation B Peherstorfer, K Willcox, M Gunzburger SIAM Journal on Scientific Computing 38 (5), A3163-A3194, 2016 | 277 | 2016 |
Lift & Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems E Qian, B Kramer, B Peherstorfer, K Willcox Physica D: Nonlinear Phenomena 406, 132401, 2020 | 271 | 2020 |
Localized discrete empirical interpolation method B Peherstorfer, D Butnaru, K Willcox, HJ Bungartz SIAM Journal on Scientific Computing 36 (1), 2014 | 270 | 2014 |
Dynamic data-driven reduced-order models B Peherstorfer, K Willcox Computer Methods in Applied Mechanics and Engineering 291, 21-41, 2015 | 207 | 2015 |
Online Adaptive Model Reduction for Nonlinear Systems via Low-Rank Updates B Peherstorfer, K Willcox SIAM Journal on Scientific Computing 37 (4), A2123-A2150, 2015 | 200 | 2015 |
Model Reduction for Transport-Dominated Problems via Online Adaptive Bases and Adaptive Sampling B Peherstorfer SIAM Journal on Scientific Computing 42 (5), A2803-A2836, 2020 | 141 | 2020 |
Multifidelity importance sampling B Peherstorfer, T Cui, Y Marzouk, K Willcox Computer Methods in Applied Mechanics and Engineering, 2015 | 141 | 2015 |
Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms P Benner, P Goyal, B Kramer, B Peherstorfer, K Willcox Computer Methods in Applied Mechanics and Engineering 372, 113433, 2020 | 107 | 2020 |
Spatially adaptive sparse grids for high-dimensional data-driven problems D Pflüger, B Peherstorfer, HJ Bungartz Journal of Complexity 26 (5), 508-522, 2010 | 102 | 2010 |
Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points B Peherstorfer, Z Drmač, S Gugercin SIAM Journal on Scientific Computing 42 (5), A2837-A2864, 2020 | 92 | 2020 |
Analysis of Car Crash Simulation Data with Nonlinear Machine Learning Methods B Bohn, J Garcke, R Iza-Teran, A Paprotny, B Peherstorfer, ... Procedia Computer Science 18, 621-630, 2013 | 91 | 2013 |
Data-Driven Reduced Model Construction with Time-Domain Loewner Models B Peherstorfer, S Gugercin, K Willcox SIAM Journal on Scientific Computing 39 (5), A2152-A2178, 2017 | 87 | 2017 |
Multifidelity Monte Carlo estimation of variance and sensitivity indices E Qian, B Peherstorfer, D O'Malley, VV Vesselinov, K Willcox SIAM/ASA Journal on Uncertainty Quantification 6 (2), 683-706, 2018 | 82 | 2018 |
Geometric subspace updates with applications to online adaptive nonlinear model reduction R Zimmermann, B Peherstorfer, K Willcox SIAM Journal on Matrix Analysis and Applications 39 (1), 234-261, 2018 | 73 | 2018 |
Manifold Approximations via Transported Subspaces: Model Reduction for Transport-Dominated Problems D Rim, B Peherstorfer, KT Mandli SIAM Journal on Scientific Computing 45 (1), A170-A199, 2023 | 59* | 2023 |
Multifidelity preconditioning of the cross-entropy method for rare event simulation and failure probability estimation B Peherstorfer, B Kramer, K Willcox SIAM/ASA Journal on Uncertainty Quantification 6 (2), 737-761, 2018 | 53 | 2018 |
Combining multiple surrogate models to accelerate failure probability estimation with expensive high-fidelity models B Peherstorfer, B Kramer, K Willcox Journal of Computational Physics, 2017 | 50 | 2017 |