Convolutional sequence to sequence learning J Gehring, M Auli, D Grangier, D Yarats, YN Dauphin International conference on machine learning, 1243-1252, 2017 | 4108 | 2017 |
fairseq: A fast, extensible toolkit for sequence modeling M Ott, S Edunov, A Baevski, A Fan, S Gross, N Ng, D Grangier, M Auli arXiv preprint arXiv:1904.01038, 2019 | 3020 | 2019 |
Language modeling with gated convolutional networks YN Dauphin, A Fan, M Auli, D Grangier International conference on machine learning, 933-941, 2017 | 2697 | 2017 |
Understanding back-translation at scale S Edunov, M Ott, M Auli, D Grangier arXiv preprint arXiv:1808.09381, 2018 | 1266 | 2018 |
3d human pose estimation in video with temporal convolutions and semi-supervised training D Pavllo, C Feichtenhofer, D Grangier, M Auli Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 1184 | 2019 |
Scaling neural machine translation M Ott, S Edunov, D Grangier, M Auli arXiv preprint arXiv:1806.00187, 2018 | 634 | 2018 |
A convolutional encoder model for neural machine translation J Gehring, M Auli, D Grangier, YN Dauphin arXiv preprint arXiv:1611.02344, 2016 | 587 | 2016 |
Neural text generation from structured data with application to the biography domain R Lebret, D Grangier, M Auli arXiv preprint arXiv:1603.07771, 2016 | 543 | 2016 |
Efficient content-based sparse attention with routing transformers A Roy, M Saffar, A Vaswani, D Grangier Transactions of the Association for Computational Linguistics 9, 53-68, 2021 | 521 | 2021 |
Label embedding trees for large multi-class tasks S Bengio, J Weston, D Grangier Advances in neural information processing systems 23, 2010 | 482 | 2010 |
ELI5: Long form question answering A Fan, Y Jernite, E Perez, D Grangier, J Weston, M Auli arXiv preprint arXiv:1907.09190, 2019 | 435 | 2019 |
A discriminative kernel-based approach to rank images from text queries D Grangier, S Bengio IEEE transactions on pattern analysis and machine intelligence 30 (8), 1371-1384, 2008 | 427 | 2008 |
Audiolm: a language modeling approach to audio generation Z Borsos, R Marinier, D Vincent, E Kharitonov, O Pietquin, M Sharifi, ... IEEE/ACM transactions on audio, speech, and language processing 31, 2523-2533, 2023 | 363 | 2023 |
Controllable abstractive summarization A Fan, D Grangier, M Auli arXiv preprint arXiv:1711.05217, 2017 | 317 | 2017 |
Efficient softmax approximation for GPUs A Joulin, M Cissé, D Grangier, H Jégou International conference on machine learning, 1302-1310, 2017 | 311 | 2017 |
Quaternet: A quaternion-based recurrent model for human motion D Pavllo, D Grangier, M Auli arXiv preprint arXiv:1805.06485, 2018 | 302 | 2018 |
Experts, errors, and context: A large-scale study of human evaluation for machine translation M Freitag, G Foster, D Grangier, V Ratnakar, Q Tan, W Macherey Transactions of the Association for Computational Linguistics 9, 1460-1474, 2021 | 281 | 2021 |
Wavesplit: End-to-end speech separation by speaker clustering N Zeghidour, D Grangier IEEE/ACM Transactions on Audio, Speech, and Language Processing 29, 2840-2849, 2021 | 263 | 2021 |
Contrastive learning of general-purpose audio representations A Saeed, D Grangier, N Zeghidour ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021 | 261 | 2021 |
Analyzing uncertainty in neural machine translation M Ott, M Auli, D Grangier, MA Ranzato International Conference on Machine Learning, 3956-3965, 2018 | 257 | 2018 |