Noise-contrastive estimation: A new estimation principle for unnormalized statistical models M Gutmann, A Hyvärinen Proceedings of the thirteenth international conference on artificial …, 2010 | 2562 | 2010 |
Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. MU Gutmann, A Hyvärinen Journal of machine learning research 13 (2), 2012 | 917 | 2012 |
Veegan: Reducing mode collapse in gans using implicit variational learning A Srivastava, L Valkov, C Russell, MU Gutmann, C Sutton Advances in neural information processing systems 30, 2017 | 787 | 2017 |
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models MU Gutmann, J Corander Journal of Machine Learning Research 17, 1-47, 2016 | 334 | 2016 |
Fundamentals and recent developments in approximate Bayesian computation J Lintusaari, MU Gutmann, R Dutta, S Kaski, J Corander Systematic biology 66 (1), e66-e82, 2017 | 295 | 2017 |
Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection B Li, SM Clohisey, BS Chia, B Wang, A Cui, T Eisenhaure, LD Schweitzer, ... Nature communications 11 (1), 164, 2020 | 171 | 2020 |
Likelihood-free inference by ratio estimation O Thomas, R Dutta, J Corander, S Kaski, MU Gutmann Bayesian Analysis 17 (1), 1-31, 2022 | 158* | 2022 |
Likelihood-free inference via classification MU Gutmann, R Dutta, S Kaski, J Corander Statistics and Computing 28, 411-425, 2018 | 149* | 2018 |
Frequency-dependent selection in vaccine-associated pneumococcal population dynamics J Corander, C Fraser, MU Gutmann, B Arnold, WP Hanage, SD Bentley, ... Nature ecology & evolution 1 (12), 1950-1960, 2017 | 138 | 2017 |
Bayesian inference of atomistic structure in functional materials M Todorović, MU Gutmann, J Corander, P Rinke Npj computational materials 5 (1), 35, 2019 | 117 | 2019 |
Telescoping density-ratio estimation B Rhodes, K Xu, MU Gutmann Advances in neural information processing systems 33, 4905-4916, 2020 | 92 | 2020 |
Elfi: Engine for likelihood-free inference J Lintusaari, H Vuollekoski, A Kangasrääsiö, K Skytén, M Järvenpää, ... Journal of Machine Learning Research 19 (16), 1-7, 2018 | 90 | 2018 |
Bregman divergence as general framework to estimate unnormalized statistical models M Gutmann, J Hirayama arXiv preprint arXiv:1202.3727, 2012 | 82 | 2012 |
Efficient acquisition rules for model-based approximate Bayesian computation M Järvenpää, MU Gutmann, A Pleska, A Vehtari, P Marttinen | 77 | 2019 |
Bayesian experimental design for implicit models by mutual information neural estimation S Kleinegesse, MU Gutmann International conference on machine learning, 5316-5326, 2020 | 72 | 2020 |
Neural approximate sufficient statistics for implicit models Y Chen, D Zhang, M Gutmann, A Courville, Z Zhu arXiv preprint arXiv:2010.10079, 2020 | 58 | 2020 |
Efficient Bayesian experimental design for implicit models S Kleinegesse, MU Gutmann The 22nd International Conference on Artificial Intelligence and Statistics …, 2019 | 57 | 2019 |
Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2 A Hyvärinen, M Gutmann, PO Hoyer BMC neuroscience 6, 1-12, 2005 | 56 | 2005 |
Weak epistasis may drive adaptation in recombining bacteria BJ Arnold, MU Gutmann, YH Grad, SK Sheppard, J Corander, M Lipsitch, ... Genetics 208 (3), 1247-1260, 2018 | 54 | 2018 |
Conditional noise-contrastive estimation of unnormalised models C Ceylan, MU Gutmann International Conference on Machine Learning, 726-734, 2018 | 51 | 2018 |