A new test for chaos in deterministic systems GA Gottwald, I Melbourne Proceedings of the Royal Society of London. Series A: Mathematical, Physical …, 2004 | 705 | 2004 |
On the implementation of the 0–1 test for chaos GA Gottwald, I Melbourne SIAM Journal on Applied Dynamical Systems 8 (1), 129-145, 2009 | 483 | 2009 |
An integrable shallow water equation with linear and nonlinear dispersion HR Dullin, GA Gottwald, DD Holm Physical Review Letters 87 (19), 194501, 2001 | 481 | 2001 |
Testing for chaos in deterministic systems with noise GA Gottwald, I Melbourne Physica D: Nonlinear Phenomena 212 (1-2), 100-110, 2005 | 375 | 2005 |
Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves HR Dullin, GA Gottwald, DD Holm Fluid Dynamics Research 33 (1-2), 73, 2003 | 317 | 2003 |
On asymptotically equivalent shallow water wave equations HR Dullin, GA Gottwald, DD Holm Physica D: Nonlinear Phenomena 190 (1-2), 1-14, 2004 | 253 | 2004 |
On multiscale entropy analysis for physiological data RA Thuraisingham, GA Gottwald Physica A: Statistical Mechanics and its Applications 366, 323-332, 2006 | 197 | 2006 |
On the validity of the 0–1 test for chaos GA Gottwald, I Melbourne Nonlinearity 22 (6), 1367, 2009 | 179 | 2009 |
The 0-1 test for chaos: A review GA Gottwald, I Melbourne Chaos detection and predictability, 221-247, 2016 | 160 | 2016 |
Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework TJ Bridges, G Derks, G Gottwald Physica D: Nonlinear Phenomena 172 (1-4), 190-216, 2002 | 154 | 2002 |
Application of the 0-1 test for chaos to experimental data I Falconer, GA Gottwald, I Melbourne, K Wormnes SIAM Journal on Applied Dynamical Systems 6 (2), 395-402, 2007 | 145 | 2007 |
A computational method to extract macroscopic variables and their dynamics in multiscale systems G Froyland, GA Gottwald, A Hammerlindl SIAM Journal on Applied Dynamical Systems 13 (4), 1816-1846, 2014 | 91 | 2014 |
Homogenization for deterministic maps and multiplicative noise GA Gottwald, I Melbourne Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2013 | 89 | 2013 |
A Hamiltonian particle-mesh method for the rotating shallow-water equations J Frank, G Gottwald, S Reich Meshfree methods for partial differential equations, 131-142, 2002 | 84 | 2002 |
Stochastic climate theory GA Gottwald, DT Crommelin, CLE Franzke arXiv preprint arXiv:1612.07474, 2016 | 83 | 2016 |
Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics CJ Cotter, GA Gottwald, DD Holm Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2017 | 79 | 2017 |
Chaos detection and predictability CH Skokos, GA Gottwald, J Laskar Springer, 2016 | 79 | 2016 |
Comment on “Reliability of the 0-1 test for chaos” GA Gottwald, I Melbourne Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 77 (2 …, 2008 | 78 | 2008 |
Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation GA Gottwald, S Reich Physica D: Nonlinear Phenomena 423, 132911, 2021 | 68 | 2021 |
Unifying scaling theory for vortex dynamics in two-dimensional turbulence DG Dritschel, RK Scott, C Macaskill, GA Gottwald, CV Tran Physical review letters 101 (9), 094501, 2008 | 61 | 2008 |