关注
Daiki Chijiwa
Daiki Chijiwa
在 hco.ntt.co.jp 的电子邮件经过验证
标题
引用次数
引用次数
年份
Pruning randomly initialized neural networks with iterative randomization
D Chijiwa, S Yamaguchi, Y Ida, K Umakoshi, T Inoue
Advances in Neural Information Processing Systems 34, 4503-4513, 2021
262021
Meta-ticket: Finding optimal subnetworks for few-shot learning within randomly initialized neural networks
D Chijiwa, S Yamaguchi, A Kumagai, Y Ida
Advances in Neural Information Processing Systems 35, 25264-25277, 2022
62022
Revisiting Permutation Symmetry for Merging Models between Different Datasets
M Yamada, T Yamashita, S Yamaguchi, D Chijiwa
arXiv preprint arXiv:2306.05641, 2023
32023
Transfer Learning with Pre-trained Conditional Generative Models
S Yamaguchi, S Kanai, A Kumagai, D Chijiwa, H Kashima
arXiv preprint arXiv:2204.12833, 2022
32022
Transferring Learning Trajectories of Neural Networks
D Chijiwa
arXiv preprint arXiv:2305.14122, 2023
22023
Partial Search in a Frozen Network is Enough to Find a Strong Lottery Ticket
H Otsuka, D Chijiwa, ÁL García-Arias, Y Okoshi, K Kawamura, T Van Chu, ...
arXiv preprint arXiv:2402.14029, 2024
2024
Regularizing Neural Networks with Meta-Learning Generative Models
S Yamaguchi, D Chijiwa, S Kanai, A Kumagai, H Kashima
Advances in Neural Information Processing Systems 36, 2024
2024
Adaptive Random Feature Regularization on Fine-tuning Deep Neural Networks
S Yamaguchi, S Kanai, K Adachi, D Chijiwa
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
2024
Learning model optimization device, learning model optimization method, and learning model optimization program
D Chijiwa, K Umakoshi, T Inoue, D Yokozeki
US Patent App. 18/246,782, 2023
2023
PROCESSING SERVER, PROCESSING METHOD AND PROCESSING PROGRAM
D Chijiwa, K Umakoshi, T Inoue, D Yokozeki
US Patent App. 17/797,544, 2023
2023
Base-Change at Prediction: Inference-Time Update of Fine-Tuned Models
D Chijiwa, T Hasegawa, K Nishida, K Saito, S Takeuchi
ICML 2024 Workshop on LLMs and Cognition, 0
系统目前无法执行此操作,请稍后再试。
文章 1–11