Efficient photometric selection of quasars from the Sloan Digital Sky Survey. II.∼ 1, 000, 000 quasars from Data Release 6 GT Richards, AD Myers, AG Gray, RN Riegel, RC Nichol, RJ Brunner, ... The Astrophysical Journal Supplement Series 180 (1), 67, 2008 | 384 | 2008 |
Logical neural networks R Riegel, A Gray, F Luus, N Khan, N Makondo, IY Akhalwaya, H Qian, ... arXiv preprint arXiv:2006.13155, 2020 | 164 | 2020 |
Configurable Machine Learning Method Selection and Parameter Optimization System and Method M Gibiansky, R Riegel, Y Yang, P Ram, A Gray US Patent App. 14/883,522, 2016 | 145 | 2016 |
Leveraging abstract meaning representation for knowledge base question answering P Kapanipathi, I Abdelaziz, S Ravishankar, S Roukos, A Gray, R Astudillo, ... arXiv preprint arXiv:2012.01707, 2020 | 129* | 2020 |
Quasar classification using color and variability CM Peters, GT Richards, AD Myers, MA Strauss, KB Schmidt, Ž Ivezić, ... The Astrophysical Journal 811 (2), 95, 2015 | 88 | 2015 |
Bayesian high-redshift quasar classification from optical and mid-IR photometry GT Richards, AD Myers, CM Peters, CM Krawczyk, G Chase, NP Ross, ... The Astrophysical Journal Supplement Series 219 (2), 39, 2015 | 83 | 2015 |
Neuro-symbolic inductive logic programming with logical neural networks P Sen, BWSR de Carvalho, R Riegel, A Gray Proceedings of the AAAI conference on artificial intelligence 36 (8), 8212-8219, 2022 | 50 | 2022 |
Logic embeddings for complex query answering F Luus, P Sen, P Kapanipathi, R Riegel, N Makondo, T Lebese, A Gray arXiv preprint arXiv:2103.00418, 2021 | 26 | 2021 |
A benchmark for generalizable and interpretable temporal question answering over knowledge bases S Neelam, U Sharma, H Karanam, S Ikbal, P Kapanipathi, I Abdelaziz, ... arXiv preprint arXiv:2201.05793, 2022 | 12 | 2022 |
Logical neural networks (2020) R Riegel, A Gray, F Luus, N Khan, N Makondo, IY Akhalwaya, H Qian, ... arXiv preprint arXiv:2006.13155, 2006 | 12 | 2006 |
Massive-scale kernel discriminant analysis: Mining for quasars R Riegel, A Gray, G Richards Proceedings of the 2008 SIAM International Conference on Data Mining, 208-218, 2008 | 11 | 2008 |
Foundations of reasoning with uncertainty via real-valued logics R Fagin, R Riegel, A Gray Proceedings of the National Academy of Sciences 121 (21), e2309905121, 2024 | 9 | 2024 |
First-order logical neural networks with bidirectional inference RN Riegel, FP Luus, IY Akhalwaya, NA Khan, N Makondo, F Barahona, ... US Patent App. 17/063,899, 2021 | 6 | 2021 |
Training logical neural networks by primal–dual methods for neuro-symbolic reasoning S Lu, N Khan, IY Akhalwaya, R Riegel, L Horesh, A Gray ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021 | 6 | 2021 |
Large-scale kernel discriminant analysis with application to quasar discovery A Gray, R Riegel Proceedings of Computational Statistics, 2006 | 6 | 2006 |
A parallel N-body data mining framework GF Boyer, RN Riegel, AG Gray NIPS Workshop on Efficient Machine Learning 1304, 2007 | 5 | 2007 |
Generalized N-body problems: a Framework for Scalable Computation RN Riegel Georgia Institute of Technology, 2013 | 4 | 2013 |
Photometric Quasars: The One Million Mark and 9-D SDSS+ Spitzer Selection GT Richards, A Myers, R Brunner, N Strand, R Nichol, A Gray, R Riegel, ... American Astronomical Society Meeting Abstracts 211, 142.02, 2007 | 4 | 2007 |
Logical credal networks R Marinescu, H Qian, A Gray, D Bhattacharjya, F Barahona, T Gao, ... Advances in Neural Information Processing Systems 35, 15325-15337, 2022 | 3 | 2022 |
Multitree algorithms for large-scale astrostatistics WB March, A Ozakin, D Lee, R Riegel, AG Gray Advances in Machine Learning and Data Mining for Astronomy, 463-483, 2012 | 3 | 2012 |