Trainability and accuracy of artificial neural networks: An interacting particle system approach G Rotskoff, E Vanden‐Eijnden Communications on Pure and Applied Mathematics 75 (9), 1889-1935, 2022 | 332* | 2022 |
Single-particle mapping of nonequilibrium nanocrystal transformations X Ye, MR Jones, LB Frechette, Q Chen, AS Powers, P Ercius, G Dunn, ... Science 354 (6314), 874-877, 2016 | 242 | 2016 |
Inferring dissipation from current fluctuations TR Gingrich, GM Rotskoff, JM Horowitz Journal of Physics A: Mathematical and Theoretical 50 (18), 184004, 2017 | 168 | 2017 |
Parameters as interacting particles: long time convergence and asymptotic error scaling of neural networks G Rotskoff, E Vanden-Eijnden Advances in neural information processing systems 31, 2018 | 139 | 2018 |
Adaptive Monte Carlo augmented with normalizing flows M Gabrié, GM Rotskoff, E Vanden-Eijnden Proceedings of the National Academy of Sciences 119 (10), e2109420119, 2022 | 105 | 2022 |
Geometric approach to optimal nonequilibrium control: Minimizing dissipation in nanomagnetic spin systems GM Rotskoff, GE Crooks, E Vanden-Eijnden Physical Review E 95 (1), 012148, 2017 | 83 | 2017 |
Transition-tempered metadynamics: Robust, convergent metadynamics via on-the-fly transition barrier estimation JF Dama, G Rotskoff, M Parrinello, GA Voth Journal of Chemical Theory and Computation 10 (9), 3626-3633, 2014 | 83 | 2014 |
Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model GM Rotskoff, GE Crooks Physical Review E 92 (6), 060102, 2015 | 73 | 2015 |
Unraveling kinetically-driven mechanisms of gold nanocrystal shape transformations using graphene liquid cell electron microscopy MR Hauwiller, LB Frechette, MR Jones, JC Ondry, GM Rotskoff, ... Nano letters 18 (9), 5731-5737, 2018 | 72 | 2018 |
Efficiency and large deviations in time-asymmetric stochastic heat engines TR Gingrich, GM Rotskoff, S Vaikuntanathan, PL Geissler New Journal of Physics 16 (10), 102003, 2014 | 64 | 2014 |
Neuron birth-death dynamics accelerates gradient descent and converges asymptotically G Rotskoff, S Jelassi, J Bruna, E Vanden-Eijnden International Conference on Machine Learning, 2019 | 61* | 2019 |
Near-optimal protocols in complex nonequilibrium transformations TR Gingrich, GM Rotskoff, GE Crooks, PL Geissler Proceedings of the National Academy of Sciences 113 (37), 10263-10268, 2016 | 59 | 2016 |
A mean-field analysis of two-player zero-sum games C Domingo-Enrich, S Jelassi, A Mensch, G Rotskoff, J Bruna NeurIPS 2020, 2020 | 53 | 2020 |
Structural basis of a protein partner switch that regulates the general stress response of α-proteobacteria J Herrou, G Rotskoff, Y Luo, B Roux, S Crosson Proceedings of the National Academy of Sciences 109 (21), E1415-E1423, 2012 | 53 | 2012 |
Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen JW Willett, J Herrou, A Briegel, G Rotskoff, S Crosson Proceedings of the National Academy of Sciences 112 (28), E3709-E3718, 2015 | 52 | 2015 |
Robust nonequilibrium pathways to microcompartment assembly GM Rotskoff, PL Geissler Proceedings of the National Academy of Sciences 115 (25), 6341-6346, 2018 | 49 | 2018 |
Molecular simulation workflows as parallel algorithms: the execution engine of Copernicus, a distributed high-performance computing platform S Pronk, I Pouya, M Lundborg, G Rotskoff, B Wesen, PM Kasson, ... Journal of chemical theory and computation 11 (6), 2600-2608, 2015 | 49 | 2015 |
Necessity of capillary modes in a minimal model of nanoscale hydrophobic solvation S Vaikuntanathan, G Rotskoff, A Hudson, PL Geissler Proceedings of the National Academy of Sciences 113 (16), E2224-E2230, 2016 | 37 | 2016 |
A dynamical central limit theorem for shallow neural networks Z Chen, G Rotskoff, J Bruna, E Vanden-Eijnden Advances in Neural Information Processing Systems 33, 22217-22230, 2020 | 36 | 2020 |
Active importance sampling for variational objectives dominated by rare events: Consequences for optimization and generalization GM Rotskoff, AR Mitchell, E Vanden-Eijnden Mathematical and Scientific Machine Learning, 757-780, 2022 | 33 | 2022 |