Correlations between oil and stock markets: a wavelet-based approach B Martín-Barragán, SB Ramos, H Veiga Economic modelling 50, 212–227, 2015 | 96 | 2015 |
Interpretable support vector machines for functional data B Martin-Barragan, R Lillo, J Romo European Journal of Operational Research 232 (1), 146-155, 2014 | 83 | 2014 |
A nested heuristic for parameter tuning in Support Vector Machines E Carrizosa, B Martín-Barragán, D Romero Morales Computers & Operations Research 43, 328-334, 2014 | 60* | 2014 |
Binarized support vector machines E Carrizosa, B Martin-Barragan, DR Morales INFORMS Journal on Computing 22 (1), 154-167, 2010 | 50 | 2010 |
Detecting relevant variables and interactions in supervised classification E Carrizosa, B Martín-Barragán, DR Morales European Journal of Operational Research 213 (1), 260-269, 2011 | 49 | 2011 |
A simple heuristic for perishable item inventory control under non-stationary stochastic demand A Gutierrez-Alcoba, R Rossi, B Martin-Barragan, EMT Hendrix International Journal of Production Research, 1-13, 2016 | 44 | 2016 |
Variable selection in classification for multivariate functional data R Blanquero, E Carrizosa, A Jiménez-Cordero, B Martín-Barragán Information Sciences 481, 445-462, 2019 | 38 | 2019 |
Interpretable machine learning for imbalanced credit scoring datasets Y Chen, R Calabrese, B Martin-Barragan European Journal of Operational Research 312 (1), 357-372, 2024 | 30 | 2024 |
Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm R Blanquero, E Carrizosa, A Jiménez-Cordero, B Martín-Barragán European Journal of Operational Research 275 (1), 195-207, 2019 | 30* | 2019 |
Multi-group support vector machines with measurement costs: A biobjective approach E Carrizosa, B Martin-Barragan, DR Morales Discrete Applied Mathematics 156 (6), 950-966, 2008 | 29 | 2008 |
Computing non-stationary (s, S) policies using mixed integer linear programming M Xiang, R Rossi, B Martin-Barragan, SA Tarim European Journal of Operational Research 271 (2), 490-500, 2018 | 28 | 2018 |
On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19 S Benítez-Peña, E Carrizosa, V Guerrero, MD Jiménez-Gamero, ... European Journal of Operational Research 295 (2), 648-663, 2021 | 25 | 2021 |
On the selection of the globally optimal prototype subset for nearest-neighbor classification E Carrizosa, B Martín-Barragán, F Plastria, DR Morales INFORMS Journal on Computing 19 (3), 470-479, 2007 | 21 | 2007 |
Functional boxplots based on epigraphs and hypographs B Martin-Barragan, RE Lillo, J Romo Journal of Applied Statistics, 1-16, 2015 | 19* | 2015 |
Selection of time instants and intervals with support vector regression for multivariate functional data R Blanquero, E Carrizosa, A Jiménez-Cordero, B Martín-Barragán Computers & Operations Research 123, 105050, 2020 | 16* | 2020 |
Two-group classification via a biobjective margin maximization model E Carrizosa, B Martin-Barragan European Journal of Operational Research 173 (3), 746-761, 2006 | 16 | 2006 |
A projection multi-objective SVM method for multi-class classification L Liu, B Martín-Barragán, FJ Prieto Computers & Industrial Engineering 158, 107425, 2021 | 14 | 2021 |
Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants Y Wang, G Andreeva, B Martin-Barragan International Review of Financial Analysis 90, 102914, 2023 | 13 | 2023 |
The dynamic bowser routing problem R Rossi, M Tomasella, B Martin-Barragan, T Embley, C Walsh, ... European Journal of Operational Research 275 (1), 108-126, 2019 | 8 | 2019 |
Additive Level Outliers in Multivariate GARCH Models A Grané, H Veiga, B Martín-Barragán Topics in Statistical Simulation, 247-255, 2014 | 8* | 2014 |