On the opportunities and risks of foundation models R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ... arXiv preprint arXiv:2108.07258, 2021 | 3123 | 2021 |
Hogwild: A lock-free approach to parallelizing stochastic gradient descent F Niu, B Recht, C Ré, S Wright Advances in Neural Information Processing Systems, 693-701, 2011 | 2730* | 2011 |
Snorkel: Rapid training data creation with weak supervision A Ratner, SH Bach, H Ehrenberg, J Fries, S Wu, C Ré Proceedings of the VLDB endowment. International conference on very large …, 2017 | 1297 | 2017 |
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features KH Yu, C Zhang, GJ Berry, RB Altman, C Ré, DL Rubin, M Snyder Nature communications 7 (1), 12474, 2016 | 966 | 2016 |
Flashattention: Fast and memory-efficient exact attention with io-awareness T Dao, D Fu, S Ermon, A Rudra, C Ré Advances in Neural Information Processing Systems 35, 16344-16359, 2022 | 905 | 2022 |
Incremental knowledge base construction using DeepDive C De Sa, A Ratner, C Ré, J Shin, F Wang, S Wu, C Zhang The VLDB Journal 26, 81-105, 2017 | 842* | 2017 |
Data programming: Creating large training sets, quickly AJ Ratner, CM De Sa, S Wu, D Selsam, C Ré Advances in neural information processing systems 29, 2016 | 823 | 2016 |
Holistic evaluation of language models P Liang, R Bommasani, T Lee, D Tsipras, D Soylu, M Yasunaga, Y Zhang, ... arXiv preprint arXiv:2211.09110, 2022 | 717 | 2022 |
Efficiently modeling long sequences with structured state spaces A Gu, K Goel, C Ré arXiv preprint arXiv:2111.00396, 2021 | 700 | 2021 |
Probabilistic databases D Suciu, D Olteanu, C Ré, C Koch Springer Nature, 2022 | 652 | 2022 |
Hyperbolic graph convolutional neural networks I Chami, Z Ying, C Ré, J Leskovec Advances in neural information processing systems 32, 2019 | 646 | 2019 |
The MADlib analytics library or MAD skills, the SQL J Hellerstein, C Ré, F Schoppmann, DZ Wang, E Fratkin, A Gorajek, ... arXiv preprint arXiv:1208.4165, 2012 | 537 | 2012 |
Holoclean: Holistic data repairs with probabilistic inference T Rekatsinas, X Chu, IF Ilyas, C Ré arXiv preprint arXiv:1702.00820, 2017 | 508 | 2017 |
Efficient top-k query evaluation on probabilistic data C Re, N Dalvi, D Suciu 2007 IEEE 23rd International Conference on Data Engineering, 886-895, 2006 | 482 | 2006 |
An asynchronous parallel stochastic coordinate descent algorithm J Liu, S Wright, C Ré, V Bittorf, S Sridhar International Conference on Machine Learning, 469-477, 2014 | 435 | 2014 |
Representation tradeoffs for hyperbolic embeddings F Sala, C De Sa, A Gu, C Ré International conference on machine learning, 4460-4469, 2018 | 428 | 2018 |
Parallel stochastic gradient algorithms for large-scale matrix completion B Recht, C Ré Mathematical Programming Computation 5 (2), 201-226, 2013 | 407 | 2013 |
Worst-case optimal join algorithms HQ Ngo, E Porat, C Ré, A Rudra Journal of the ACM (JACM) 65 (3), 1-40, 2018 | 399 | 2018 |
Low-dimensional hyperbolic knowledge graph embeddings I Chami, A Wolf, DC Juan, F Sala, S Ravi, C Ré arXiv preprint arXiv:2005.00545, 2020 | 395 | 2020 |
Learning to compose domain-specific transformations for data augmentation AJ Ratner, H Ehrenberg, Z Hussain, J Dunnmon, C Ré Advances in neural information processing systems 30, 2017 | 395 | 2017 |