关注
Wenjia Wang
标题
引用次数
引用次数
年份
On Prediction Properties of Kriging: Uniform Error Bounds and Robustness
W Wang, R Tuo, CJ Wu
Journal of the American Statistical Association, 1-38, 2019
632019
Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network
T Hu*, W Wang*, C Lin, G Cheng, (*equal contributions)
the 24th International Conference on Artificial Intelligence and Statistics, 2021
402021
Kriging prediction with isotropic Mat\'ern correlations: robustness and experimental design
R Tuo*, W Wang*, (*equal contributions)
J. Mach. Learn. Res. 21, 2019
352019
Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
W Wang, BY Jing
Journal of Machine Learning Research 23 (193), 1-67, 2022
22*2022
Controlling sources of inaccuracy in stochastic kriging
W Wang, B Haaland
Technometrics, 2019
222019
Solving spatial-fractional partial differential diffusion equations by spectral method
N Nie, J Huang, W Wang, Y Tang
Journal of Statistical Computation and Simulation 84 (6), 1173-1189, 2014
202014
On the inference of applying Gaussian process modeling to a deterministic function
W Wang
Electronic Journal of Statistics 15 (2), 5014-5066, 2021
192021
Neural network Gaussian process considering input uncertainty for composite structure assembly
C Lee, J Wu, W Wang, X Yue
IEEE/ASME Transactions on Mechatronics 27 (3), 1267-1277, 2020
172020
Your contrastive learning is secretly doing stochastic neighbor embedding
T Hu, Z Liu, F Zhou, W Wang, W Huang
arXiv preprint arXiv:2205.14814, 2022
162022
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
T Hu*, J Wang*, W Wang*, Z Li, (*equal contributions)
Neural Information Processing Systems 2022, 2022
162022
Multi-Resolution Functional ANOVA for Large-Scale, Many-Input Computer Experiments
CL Sung*, W Wang*, M Plumlee, B Haaland, (*equal contributions)
Journal of the American Statistical Association, 1-32, 2019
132019
A framework for controlling sources of inaccuracy in Gaussian process emulation of deterministic computer experiments
B Haaland, W Wang, V Maheshwari
SIAM/ASA Journal on Uncertainty Quantification 6 (2), 497-521, 2018
122018
Deep learning for multivariate time series imputation: A survey
J Wang, W Du, W Cao, K Zhang, W Wang, Y Liang, Q Wen
arXiv preprint arXiv:2402.04059, 2024
112024
Gaussian processes with input location error and applications to the composite parts assembly process
W Wang, X Yue, B Haaland, CF Jeff Wu
SIAM/ASA Journal on Uncertainty Quantification 10 (2), 619-650, 2022
112022
Differentiable and scalable generative adversarial models for data imputation
Y Wu, J Wang, X Miao, W Wang, J Yin
IEEE Transactions on Knowledge and Data Engineering, 2023
82023
Deciphering the projection head: Representation evaluation self-supervised learning
J Ma, T Hu, W Wang
arXiv preprint arXiv:2301.12189, 2023
82023
A compact difference scheme for time fractional diffusion equation with Neumann boundary conditions
J Huang, Y Tang, W Wang, J Yang
AsiaSim 2012: Asia Simulation Conference 2012, Shanghai, China, October 27 …, 2012
82012
Random smoothing regularization in kernel gradient descent learning
L Ding, T Hu, J Jiang, D Li, W Wang, Y Yao
arXiv preprint arXiv:2305.03531, 2023
72023
Structured comparison of pallet racks and gravity flow racks
J Eo, J Sonico, A Su, W Wang, C Zhou, Y Zhu, S Wu, T Chokshi
IIE Annual Conference. Proceedings, 1971, 2015
72015
Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors
W Wang, YH Zhou
Journal of Multivariate Analysis 185, 104781, 2021
62021
系统目前无法执行此操作,请稍后再试。
文章 1–20