Mixtures of g Priors for Bayesian Variable Selection F Liang, R Paulo, G Molina, MA Clyde, JO Berger Journal of the American Statistical Association 103 (481), 410-423, 2008 | 1365 | 2008 |
Accelerating magnetic resonance imaging via deep learning S Wang, Z Su, L Ying, X Peng, S Zhu, F Liang, D Feng, D Liang 2016 IEEE 13th international symposium on biomedical imaging (ISBI), 514-517, 2016 | 967 | 2016 |
Learning locally-adaptive decision functions for person verification Z Li, S Chang, F Liang, TS Huang, L Cao, JR Smith Proceedings of the IEEE conference on computer vision and pattern …, 2013 | 629 | 2013 |
On community outliers and their efficient detection in information networks J Gao, F Liang, W Fan, C Wang, Y Sun, J Han Proceedings of the 16th ACM SIGKDD international conference on Knowledge …, 2010 | 382 | 2010 |
Hierarchical gaussianization for image classification X Zhou, N Cui, Z Li, F Liang, TS Huang 2009 IEEE 12th International Conference on Computer Vision, 1971-1977, 2009 | 196 | 2009 |
Permutation tests for classification P Golland, F Liang, S Mukherjee, D Panchenko International conference on computational learning theory, 501-515, 2005 | 151 | 2005 |
Graph-based consensus maximization among multiple supervised and unsupervised models J Gao, F Liang, W Fan, Y Sun, J Han Advances in neural information processing systems 22, 2009 | 140 | 2009 |
Improved minimax predictive densities under Kullback–Leibler loss EI George, F Liang, X Xu | 125 | 2006 |
Heterogeneous feature machines for visual recognition L Cao, J Luo, F Liang, TS Huang 2009 IEEE 12th International Conference on Computer Vision, 1095-1102, 2009 | 116 | 2009 |
Machine learning for hydrologic sciences: An introductory overview T Xu, F Liang Wiley Interdisciplinary Reviews: Water 8 (5), e1533, 2021 | 107 | 2021 |
Exact minimax strategies for predictive density estimation, data compression and model selection F Liang, A Barron The 2002 IEEE International Symposium on Information Theory (ISIT), 2002 | 99 | 2002 |
An integrated framework on mining logs files for computing system management T Li, F Liang, S Ma, W Peng Proceedings of the eleventh ACM SIGKDD international conference on Knowledge …, 2005 | 98 | 2005 |
Characterizing the Function Space for Bayesian Kernel Models. NS Pillai, Q Wu, F Liang, S Mukherjee, RL Wolpert Journal of Machine Learning Research 8 (8), 2007 | 84 | 2007 |
A graph-based consensus maximization approach for combining multiple supervised and unsupervised models J Gao, F Liang, W Fan, Y Sun, J Han IEEE Transactions on Knowledge and Data Engineering 25 (1), 15-28, 2011 | 75 | 2011 |
Quantifying model structural error: Efficient B ayesian calibration of a regional groundwater flow model using surrogates and a data‐driven error model T Xu, AJ Valocchi, M Ye, F Liang Water Resources Research 53 (5), 4084-4105, 2017 | 73 | 2017 |
The use of unlabeled data in predictive modeling F Liang, S Mukherjee, M West | 69 | 2007 |
Bayesian Regularization for Graphical Models With Unequal Shrinkage L Gan, N Narisetty, F Liang Journal of the American Statistical Association, https://doi.org/10.1080 …, 2018 | 68 | 2018 |
Localized sliced inverse regression Q Wu, F Liang, S Mukherjee Journal of Computational and Graphical Statistics 19 (4), 843-860, 2010 | 63 | 2010 |
Impact of building design parameters on daylighting metrics using an analysis, prediction, and optimization approach based on statistical learning technique J Lee, M Boubekri, F Liang Sustainability 11 (5), 1474, 2019 | 60 | 2019 |
A sparse latent class model for cognitive diagnosis Y Chen, S Culpepper, F Liang Psychometrika 85 (1), 121-153, 2020 | 55 | 2020 |