Sharp well-posedness for the cubic NLS and mKdV in B Harrop-Griffiths, R Killip, M Vişan Forum of Mathematics, Pi 12, e6, 2024 | 60* | 2024 |
Long time behavior of solutions to the mKdV B Harrop-Griffiths Communications in Partial Differential Equations 41 (2), 282-317, 2016 | 57 | 2016 |
Finite depth gravity water waves in holomorphic coordinates B Harrop-Griffiths, M Ifrim, D Tataru Annals of PDE 3, 1-102, 2017 | 45 | 2017 |
Global well-posedness for the derivative nonlinear Schrödinger equation in $ L^{2}(\R) $ B Harrop-Griffiths, R Killip, M Ntekoume, M Vişan Journal of the European Mathematical Society, 2024 | 24* | 2024 |
Large-data equicontinuity for the derivative NLS B Harrop-Griffiths, R Killip, M Vişan International Mathematics Research Notices 2023 (6), 4601-4642, 2023 | 22 | 2023 |
Vortex Filament Solutions of the Navier‐Stokes Equations J Bedrossian, P Germain, B Harrop‐Griffiths Communications on Pure and Applied Mathematics 76 (4), 685-787, 2023 | 16* | 2023 |
Existence and uniqueness of solutions for a quasilinear KdV equation with degenerate dispersion P Germain, B Harrop‐Griffiths, JL Marzuola Communications on Pure and Applied Mathematics 72 (11), 2449-2484, 2019 | 16 | 2019 |
The lifespan of small data solutions to the KP-I B Harrop-Griffiths, M Ifrim, D Tataru International Mathematics Research Notices 2017 (1), 1-29, 2014 | 16 | 2014 |
Compactons and their variational properties for degenerate KdV and NLS in dimension 1 P Germain, B Harrop-Griffiths, JL Marzuola Quarterly of Applied Mathematics 78 (1), 1-32, 2020 | 15 | 2020 |
Small data global solutions for the Camassa–Choi equations B Harrop-Griffiths, JL Marzuola Nonlinearity 31 (5), 1868, 2018 | 14 | 2018 |
Large data local well-posedness for a class of KdV-type equations B Harrop-Griffiths Transactions of the American Mathematical Society, 755-773, 2015 | 8 | 2015 |
Large data local well-posedness for a class of KdV-type equations II B Harrop-Griffiths International Mathematics Research Notices 2015 (18), 8590-8619, 2014 | 7 | 2014 |
Local Well-Posedness for a Quasilinear Schrödinger Equation with Degenerate Dispersion B Harrop-Griffiths, JL Marzuola INDIANA UNIVERSITY MATHEMATICS JOURNAL 71 (4), 1585-1626, 2022 | 6 | 2022 |
On the derivation of the homogeneous kinetic wave equation for a nonlinear random matrix model G Dubach, P Germain, B Harrop-Griffiths arXiv preprint arXiv:2203.13748, 2022 | 5 | 2022 |
Microscopic conservation laws for integrable lattice models B Harrop-Griffiths, R Killip, M Vişan Monatshefte für Mathematik, 1-28, 2021 | 5 | 2021 |
The nonlinear Schr\" odinger equation with sprinkled nonlinearity B Harrop-Griffiths, R Killip, M Visan arXiv preprint arXiv:2405.01246, 2024 | | 2024 |