A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches M Galar, A Fernández, E Barrenechea, H Bustince, F Herrera Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE …, 2012 | 3174 | 2012 |
KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework J Alcalá-Fdez, A Fernández, J Luengo, J Derrac, ... Journal of Multiple-Valued Logic and Soft Computing 17 (2-3), 255-287, 2011 | 2886* | 2011 |
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power S García, A Fernández, J Luengo, F Herrera Information sciences 180 (10), 2044-2064, 2010 | 2233 | 2010 |
An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics V López, A Fernández, S García, V Palade, F Herrera Information sciences 250, 113-141, 2013 | 1841 | 2013 |
SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary A Fernandez, S Garcia, F Herrera, NV Chawla Journal of Artificial Intelligence Research 61, 863-905, 2018 | 1763 | 2018 |
Learning from imbalanced data sets A Fernández, S García, M Galar, RC Prati, B Krawczyk, F Herrera Springer 10 (2018), 2018 | 1310 | 2018 |
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes M Galar, A Fernández, E Barrenechea, H Bustince, F Herrera Pattern Recognition 44 (8), 1761-1776, 2011 | 881 | 2011 |
A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability S García, A Fernández, J Luengo, F Herrera Soft Computing 13, 959-977, 2009 | 788 | 2009 |
EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling M Galar, A Fernández, E Barrenechea, F Herrera Pattern recognition 46 (12), 3460-3471, 2013 | 459 | 2013 |
Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches A Fernández, V López, M Galar, M José del Jesus, F Herrera Knowledge-Based Systems, 2013 | 458 | 2013 |
A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets A Fernández, S García, MJ del Jesus, F Herrera Fuzzy Sets and Systems 159 (18), 2378-2398, 2008 | 367 | 2008 |
Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics V López, A Fernández, JG Moreno-Torres, F Herrera Expert Systems with Applications 39 (7), 6585-6608, 2012 | 365 | 2012 |
Big Data with Cloud Computing: an insight on the computing environment, MapReduce, and programming frameworks A Fernández, S del Río, V López, A Bawakid, MJ del Jesus, JM Benítez, ... Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4 (5 …, 2014 | 346 | 2014 |
KEEL 3.0: an open source software for multi-stage analysis in data mining I Triguero, S González, JM Moyano, S García, J Alcalá-Fdez, J Luengo, ... International Journal of Computational Intelligence Systems 10 (1), 1238-1249, 2017 | 284 | 2017 |
On the combination of genetic fuzzy systems and pairwise learning for improving detection rates on intrusion detection systems S Elhag, A Fernández, A Bawakid, S Alshomrani, F Herrera Expert Systems with Applications 42 (1), 193-202, 2015 | 271 | 2015 |
An insight into imbalanced Big Data classification: outcomes and challenges A Fernández, S del Río, NV Chawla, F Herrera Complex & Intelligent Systems 3, 105-120, 2017 | 259 | 2017 |
Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to? A Fernandez, F Herrera, O Cordon, MJ del Jesus, F Marcelloni IEEE Computational intelligence magazine 14 (1), 69-81, 2019 | 240 | 2019 |
Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets A Fernández, MJ del Jesus, F Herrera International Journal of Approximate Reasoning 50 (3), 561-577, 2009 | 232 | 2009 |
Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling J Luengo, A Fernández, S García, F Herrera Soft Computing-A Fusion of Foundations, Methodologies and Applications 15 …, 2011 | 225 | 2011 |
Genetics-based machine learning for rule induction: state of the art, taxonomy, and comparative study A Fernández, S García, J Luengo, E Bernadó-Mansilla, F Herrera IEEE Transactions on Evolutionary Computation 14 (6), 913-941, 2010 | 212 | 2010 |