Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations M Feischl, G Gantner, D Praetorius Computer Methods in Applied Mechanics and Engineering 290, 362-386, 2015 | 48 | 2015 |
Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines G Gantner, D Haberlik, D Praetorius Mathematical Models and Methods in Applied Sciences 27 (14), 2631-2674, 2017 | 45 | 2017 |
Rate optimal adaptive FEM with inexact solver for nonlinear operators G Gantner, A Haberl, D Praetorius, B Stiftner IMA Journal of Numerical Analysis 38 (4), 1797-1831, 2018 | 42 | 2018 |
Further results on a space-time FOSLS formulation of parabolic PDEs G Gantner, R Stevenson ESAIM: Mathematical Modelling and Numerical Analysis 55 (1), 283-299, 2021 | 39 | 2021 |
Adaptive 2D IGA boundary element methods M Feischl, G Gantner, A Haberl, D Praetorius Engineering Analysis with Boundary Elements 62, 141-153, 2016 | 37 | 2016 |
Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations M Feischl, G Gantner, A Haberl, D Praetorius Numerische Mathematik 136, 147-182, 2017 | 34 | 2017 |
Rate optimality of adaptive finite element methods with respect to overall computational costs G Gantner, A Haberl, D Praetorius, S Schimanko Mathematics of Computation 90 (331), 2011-2040, 2021 | 30 | 2021 |
Adaptive boundary element methods for optimal convergence of point errors M Feischl, G Gantner, A Haberl, D Praetorius, T Führer Numerische Mathematik 132, 541-567, 2016 | 23 | 2016 |
Optimal adaptivity for splines in finite and boundary element methods G Gantner PhD thesis, TU Wien, 2017 | 21 | 2017 |
Optimal convergence behavior of adaptive FEM driven by simple (h− h∕ 2)-type error estimators C Erath, G Gantner, D Praetorius Computers & Mathematics with Applications 79 (3), 623-642, 2020 | 20 | 2020 |
Mathematical foundations of adaptive isogeometric analysis A Buffa, G Gantner, C Giannelli, D Praetorius, R Vázquez Archives of Computational Methods in Engineering 29 (7), 4479-4555, 2022 | 19 | 2022 |
Adaptive isogeometric BEM G Gantner Master’s thesis, TU Wien, 2014 | 16* | 2014 |
Goal-oriented adaptive finite element methods with optimal computational complexity R Becker, G Gantner, M Innerberger, D Praetorius Numerische Mathematik 153 (1), 111-140, 2023 | 10 | 2023 |
Fast solutions for the first-passage distribution of diffusion models with space-time-dependent drift functions and time-dependent boundaries U Boehm, S Cox, G Gantner, R Stevenson Journal of Mathematical Psychology 105, 102613, 2021 | 10 | 2021 |
Adaptive IGAFEM with optimal convergence rates: T-splines G Gantner, D Praetorius Computer Aided Geometric Design 81, 101906, 2020 | 9 | 2020 |
Adaptive isogeometric boundary element methods with local smoothness control G Gantner, D Praetorius, S Schimanko Mathematical Models and Methods in Applied Sciences 30 (02), 261-307, 2020 | 9 | 2020 |
Adaptive BEM for elliptic PDE systems, part I: abstract framework, for weakly-singular integral equations G Gantner, D Praetorius Applicable Analysis 101 (6), 2085-2118, 2022 | 8 | 2022 |
Adaptive BEM for elliptic PDE systems, part II: Isogeometric analysis with hierarchical B-splines for weakly-singular integral equations G Gantner, D Praetorius Computers & Mathematics with Applications 117, 74-96, 2022 | 7 | 2022 |
Plain convergence of adaptive algorithms without exploiting reliability and efficiency G Gantner, D Praetorius IMA Journal of Numerical Analysis 42 (2), 1434-1453, 2022 | 7 | 2022 |
Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods T Führer, G Gantner, D Praetorius, S Schimanko Computer Methods in Applied Mechanics and Engineering 351, 571-598, 2019 | 7 | 2019 |