Pressure driven lubrication flow of a Bingham fluid in a channel: A novel approach L Fusi, A Farina, F Rosso, S Roscani Journal of Non-Newtonian fluid mechanics 221, 66-75, 2015 | 45 | 2015 |
Two equivalent Stefan’s problems for the time fractional diffusion equation S Roscani, ES Marcus Fractional Calculus and Applied Analysis 16, 802-815, 2013 | 43 | 2013 |
A Generalized Neumann Solution for the Two-Phase Fractional Lam\'{e}-Clapeyron-Stefan Problem SD Roscani, DA Tarzia arXiv preprint arXiv:1405.5928, 2014 | 21 | 2014 |
A new equivalence of Stefan’s problems for the time fractional diffusion equation S Roscani, E Marcus Fractional Calculus and Applied Analysis 17 (2), 371-381, 2014 | 20 | 2014 |
A new mathematical formulation for a phase change problem with a memory flux SD Roscani, J Bollati, DA Tarzia Chaos, Solitons & Fractals 116, 340-347, 2018 | 16 | 2018 |
Hopf lemma for the fractional diffusion operator and its application to a fractional free-boundary problem SD Roscani Journal of Mathematical Analysis and Applications 434 (1), 125-135, 2016 | 16 | 2016 |
Explicit solutions to fractional Stefan-like problems for Caputo and Riemann–Liouville derivatives SD Roscani, ND Caruso, DA Tarzia Communications in Nonlinear Science and Numerical Simulation 90, 105361, 2020 | 14 | 2020 |
Two different fractional Stefan problems that are convergent to the same classical Stefan problem SD Roscani, DA Tarzia Mathematical Methods in the Applied Sciences 41 (16), 6842-6850, 2018 | 12 | 2018 |
On the Initial‐Boundary‐Value Problem for the Time‐Fractional Diffusion Equation on the Real Positive Semiaxis D Goos, G Reyero, S Roscani, E Santillan Marcus International Journal of Differential Equations 2015 (1), 439419, 2015 | 12 | 2015 |
The similarity method and explicit solutions for the fractional space one-phase Stefan problems SD Roscani, DA Tarzia, LD Venturato Fractional Calculus and Applied Analysis 25 (3), 995-1021, 2022 | 8 | 2022 |
Global solution to a nonlinear fractional differential equation for the Caputo-Fabrizio derivative S Roscani, D Tarzia, L Venturato arXiv preprint arXiv:1809.02189, 2018 | 8 | 2018 |
Explicit solution for a two-phase fractional Stefan problem with a heat flux condition at the fixed face SD Roscani, DA Tarzia Computational and Applied Mathematics 37, 4757-4771, 2018 | 8 | 2018 |
An integral relationship for a fractional one-phase Stefan problem S Roscani, D Tarzia Fractional Calculus and Applied Analysis 21 (4), 901-918, 2018 | 8 | 2018 |
Moving-boundary problems for the time-fractional diffusion equation S Roscani Texas State University, Department of Mathematics, 2017 | 8 | 2017 |
Mathematical and asymptotic analysis of thermoelastic shells in normal damped response contact MT Cao-Rial, G Castiñeira, Á Rodríguez-Arós, S Roscani Communications in Nonlinear Science and Numerical Simulation 103, 105995, 2021 | 6 | 2021 |
A general non-Fourier Stefan problem formulation that accounts for memory effects VR Voller, S Roscani International Journal of Heat and Mass Transfer 209, 124094, 2023 | 5 | 2023 |
A one-phase space-fractional Stefan problem with no liquid initial domain SD Roscani, K Ryszewska, L Venturato SIAM Journal on Mathematical Analysis 54 (5), 5489-5523, 2022 | 5 | 2022 |
Asymptotic analysis of elliptic membrane shells in thermoelastodynamics MT Cao-Rial, G Castiñeira, Á Rodríguez-Arós, S Roscani Journal of Elasticity 143, 385-409, 2021 | 5 | 2021 |
Asymptotic analysis of a problem for dynamic thermoelastic shells MT Cao-Rial, G Castiñeira, A Rodríguez-Arós, S Roscani arXiv preprint arXiv:2012.00621, 2020 | 2 | 2020 |
Asymptotic analysis of a problem for dynamic thermoelastic shells in normal damped response contact MT Cao Rial, G Castiñeira, Á Rodríguez-Arós, S Roscani | 1 | 2021 |