关注
Nathalie Peyrard
Nathalie Peyrard
INRAE
在 inra.fr 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
EM procedures using mean field-like approximations for Markov model-based image segmentation
G Celeux, F Forbes, N Peyrard
Pattern recognition 36 (1), 131-144, 2003
4422003
Hidden Markov random field model selection criteria based on mean field-like approximations
F Forbes, N Peyrard
IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (9), 1089-1101, 2003
1682003
Learning ecological networks from next-generation sequencing data
C Vacher, A Tamaddoni-Nezhad, S Kamenova, N Peyrard, Y Moalic, ...
Advances in ecological research 54, 1-39, 2016
1142016
There's no harm in having too much: a comprehensive toolbox of methods in trophic ecology
N Majdi, N Hette-Tronquart, E Auclair, A Bec, T Chouvelon, B Cognie, ...
Food webs 17, e00100, 2018
652018
Modelling interaction networks for enhanced ecosystem services in agroecosystems
P Tixier, N Peyrard, JN Aubertot, S Gaba, J Radoszycki, G Caron-Lormier, ...
Advances in ecological research 49, 437-480, 2013
622013
A framework and a mean-field algorithm for the local control of spatial processes
R Sabbadin, N Peyrard, N Forsell
International Journal of Approximate Reasoning 53 (1), 66-86, 2012
462012
Classification method for disease risk mapping based on discrete hidden Markov random fields
M Charras-Garrido, D Abrial, JD Goër, S Dachian, N Peyrard
Biostatistics 13 (2), 241-255, 2012
422012
Motion-based selection of relevant video segments for video summarization
N Peyrard, P Bouthemy
Multimedia Tools and Applications 26, 259-276, 2005
422005
Quantifying the impact of uncertainty on threat management for biodiversity
S Nicol, J Brazill-Boast, E Gorrod, A McSorley, N Peyrard, I Chadès
Nature Communications 10 (1), 3570, 2019
412019
Dynamics of weeds in the soil seed bank: a hidden Markov model to estimate life history traits from standing plant time series
B Borgy, X Reboud, N Peyrard, R Sabbadin, S Gaba
PloS one 10 (10), e0139278, 2015
392015
Win‐wins for biodiversity and ecosystem service conservation depend on the trophic levels of the species providing services
H Xiao, LE Dee, I Chadès, N Peyrard, R Sabbadin, M Stringer, ...
Journal of Applied Ecology 55 (5), 2160-2170, 2018
322018
Model-based adaptive spatial sampling for occurrence map construction
N Peyrard, R Sabbadin, D Spring, B Brook, R Mac Nally
Statistics and Computing 23, 29-42, 2013
302013
Mean field approximation of the policy iteration algorithm for graph-based Markov decision processes
N Peyrard, R Sabbadin
Frontiers in Artificial Intelligence and Applications 141, 595, 2006
292006
The value of understanding feedbacks from ecosystem functions to species for managing ecosystems
H Xiao, E McDonald-Madden, R Sabbadin, N Peyrard, LE Dee, I Chadès
Nature Communications 10 (1), 3901, 2019
282019
Explorer un jeu de données sur grille par tests de permutation
N Peyrard, A Calonnec, F Bonnot, J Chadoeuf
Revue de Statistique Appliquée 53 (1), 59-78, 2005
262005
Model-based region-of-interest selection in dynamic breast MRI
F Forbes, N Peyrard, C Fraley, D Georgian-Smith, DM Goldhaber, ...
Journal of Computer Assisted Tomography 30 (4), 675-687, 2006
232006
Approximations de type champ moyen des modèles de champ de Markov pour la segmentation de données spatiales
N Peyrard
Université Joseph Fourier (Grenoble), 2001
222001
Reinforcement learning-based design of sampling policies under cost constraints in Markov random fields: Application to weed map reconstruction
M Bonneau, S Gaba, N Peyrard, R Sabbadin
Computational statistics & data analysis 72, 30-44, 2014
212014
Long-range correlations improve understanding of the influence of network structure on contact dynamics
N Peyrard, U Dieckmann, A Franc
Theoretical population biology 73 (3), 383-394, 2008
212008
Optimal spatial allocation of control effort to manage invasives in the face of imperfect detection and misclassification
M Bonneau, J Martin, N Peyrard, L Rodgers, CM Romagosa, FA Johnson
Ecological Modelling 392, 108-116, 2019
202019
系统目前无法执行此操作,请稍后再试。
文章 1–20