Schnet–a deep learning architecture for molecules and materials KT Schütt, HE Sauceda, PJ Kindermans, A Tkatchenko, KR Müller The Journal of Chemical Physics 148 (24), 2018 | 1746 | 2018 |
Don't Decay the Learning Rate, Increase the Batch Size SL Smith, PJ Kindermans, C Ying, QV Le ICLR 2018, 2018 | 1212 | 2018 |
Schnet: A continuous-filter convolutional neural network for modeling quantum interactions K Schütt, PJ Kindermans, HE Sauceda Felix, S Chmiela, A Tkatchenko, ... Advances in neural information processing systems 30, 2017 | 1184 | 2017 |
Understanding and simplifying one-shot architecture search GM Bender, P Kindermans, B Zoph, V Vasudevan, Q Le International Conference on Machine Learning (ICML) 2018, 2018 | 854 | 2018 |
A benchmark for interpretability methods in deep neural networks S Hooker, D Erhan, PJ Kindermans, B Kim Advances in neural information processing systems 32, 2019 | 765* | 2019 |
The (un) reliability of saliency methods PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ... Explainable AI: Interpreting, explaining and visualizing deep learning, 267-280, 2019 | 724 | 2019 |
Deep dynamic neural networks for multimodal gesture segmentation and recognition D Wu, L Pigou, PJ Kindermans, NDH Le, L Shao, J Dambre, JM Odobez IEEE transactions on pattern analysis and machine intelligence 38 (8), 1583-1597, 2016 | 570 | 2016 |
Sign language recognition using convolutional neural networks L Pigou, S Dieleman, PJ Kindermans, B Schrauwen Computer Vision-ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and …, 2015 | 538 | 2015 |
Learning how to explain neural networks: PatternNet and PatternAttribution PJ Kindermans, KT Schuett, M Alber, KR Müller, D Erhan, B Kim, ... ICLR 2018, 2018 | 443* | 2018 |
iNNvestigate neural networks! M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ... Journal of machine learning research 20 (93), 1-8, 2019 | 408 | 2019 |
Bignas: Scaling up neural architecture search with big single-stage models J Yu, P Jin, H Liu, G Bender, PJ Kindermans, M Tan, T Huang, X Song, ... ECCV, 2020 | 306 | 2020 |
Phenaki: Variable length video generation from open domain textual descriptions R Villegas, M Babaeizadeh, PJ Kindermans, H Moraldo, H Zhang, ... International Conference on Learning Representations, 2022 | 259 | 2022 |
Neural predictor for neural architecture search W Wen, H Liu, H Li, Y Chen, G Bender, PJ Kindermans ECCV, 2020 | 210 | 2020 |
Can weight sharing outperform random architecture search? an investigation with tunas G Bender, H Liu, B Chen, G Chu, S Cheng, PJ Kindermans, QV Le Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 153 | 2020 |
Mobiledets: Searching for object detection architectures for mobile accelerators Y Xiong, H Liu, S Gupta, B Akin, G Bender, Y Wang, PJ Kindermans, ... Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021 | 152 | 2021 |
Investigating the influence of noise and distractors on the interpretation of neural networks PJ Kindermans, K Schütt, KR Müller, S Dähne arXiv preprint arXiv:1611.07270, 2016 | 142 | 2016 |
Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller PJ Kindermans, M Tangermann, KR Müller, B Schrauwen Journal of neural engineering 11 (3), 035005, 2014 | 115 | 2014 |
Performance measurement for brain–computer or brain–machine interfaces: a tutorial DE Thompson, LR Quitadamo, L Mainardi, S Gao, PJ Kindermans, ... Journal of neural engineering 11 (3), 035001, 2014 | 102 | 2014 |
True zero-training brain-computer interfacing–an online study PJ Kindermans, M Schreuder, B Schrauwen, KR Müller, M Tangermann PloS one 9 (7), e102504, 2014 | 98 | 2014 |
A bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI PJ Kindermans, D Verstraeten, B Schrauwen PloS one 7 (4), e33758, 2012 | 90 | 2012 |