A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations JL Guermond, M Nazarov, B Popov, Y Yang SIAM Journal on Numerical Analysis 52 (4), 2163-2182, 2014 | 97 | 2014 |
Time analyticity with higher norm estimates for the 2D Navier–Stokes equations C Foias, MS Jolly, R Lan, R Rupam, Y Yang, B Zhang IMA Journal of Applied Mathematics 80 (3), 766-810, 2015 | 23 | 2015 |
The effect of the consistent mass matrix on the maximum-principle for scalar conservation equations JL Guermond, B Popov, Y Yang Journal of Scientific Computing 70, 1358-1366, 2017 | 17 | 2017 |
Invariant domains preserving arbitrary Lagrangian Eulerian approximation of hyperbolic systems with continuous finite elements JL Guermond, B Popov, L Saavedra, Y Yang SIAM Journal on Scientific Computing 39 (2), A385-A414, 2017 | 14 | 2017 |
Convergence of a homotopy finite element method for computing steady states of Burgers’ equation W Hao, Y Yang ESAIM: Mathematical Modelling and Numerical Analysis 53 (5), 1629-1644, 2019 | 4 | 2019 |
On whether zero is in the global attractor of the 2D Navier–Stokes equations C Foias, MS Jolly, Y Yang, B Zhang Nonlinearity 27 (11), 2755, 2014 | 4 | 2014 |
ON THE KOLMOGOROV ENTROPY OF THE WEAK GLOBAL ATTRACTOR OF 3D NAVIER-STOKES EQUATIONS: I Y Yang, B Zhang preprint, 2017 | 2 | 2017 |
Invariant domains preserving ale approximation of hyperbolic systems with continuous finite elements JL Guermond, L Saavedra, Y Yang arXiv preprint arXiv:1603.01184, 2016 | 2 | 2016 |
Arbitrary Lagrangian-Eulerian Finite Element Method Preserving Convex Invariants of Hyperbolic Systems JL Guermond, B Popov, L Saavedra, Y Yang Contributions to Partial Differential Equations and Applications, 251-272, 2019 | | 2019 |
Continuous Finite Element Approximation of Hyperbolic Systems Y Yang | | 2016 |