Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation G Gouesbet, B Maheu, G Gréhan JOSA A 5 (9), 1427-1443, 1988 | 813 | 1988 |
Generalized lorenz-mie theories G Gouesbet, G Gréhan Springer 31, 10.1007, 2011 | 599 | 2011 |
Particle Lagrangian simulation in turbulent flows A Berlemont, P Desjonqueres, G Gouesbet International Journal of Multiphase Flow 16 (1), 19-34, 1990 | 463 | 1990 |
Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters B Maheu, JN Letoulouzan, G Gouesbet Applied optics 23 (19), 3353-3362, 1984 | 315 | 1984 |
Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows G Gouesbet, A Berlemont Progress in Energy and Combustion Science 25 (2), 133-159, 1999 | 277 | 1999 |
Global vector-field reconstruction by using a multivariate polynomial approximation on nets G Gouesbet, C Letellier Physical Review E 49 (6), 4955, 1994 | 267 | 1994 |
Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams JA Lock, G Gouesbet JOSA A 11 (9), 2503-2515, 1994 | 262 | 1994 |
Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams G Gouesbet, JA Lock JOSA A 11 (9), 2516-2525, 1994 | 251 | 1994 |
Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory G Gouesbet, G Grehan, B Maheu JOSA A 7 (6), 998-1007, 1990 | 230 | 1990 |
On the scattering of light by a Mie scatter center located on the axis of an axisymmetric light profile [Sur la géńeralisation de la théorie de Lorenz-Mie] G Gouesbet, G Gréhan Journal of Optics 13 (2), 97-103, 1982 | 229 | 1982 |
Prediction of reverse radiation pressure by generalized Lorenz–Mie theory KF Ren, G Gréhan, G Gouesbet Applied optics 35 (15), 2702-2710, 1996 | 210 | 1996 |
Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects KF Ren, G Gréha, G Gouesbet Optics communications 108 (4-6), 343-354, 1994 | 208 | 1994 |
Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres ZS Wu, LX Guo, KF Ren, G Gouesbet, G Gréhan Applied optics 36 (21), 5188-5198, 1997 | 206 | 1997 |
Electromagnetic scattering from a multilayered sphere located in an arbitrary beam F Onofri, G Gréhan, G Gouesbet Applied optics 34 (30), 7113-7124, 1995 | 204 | 1995 |
Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review G Gouesbet, JA Lock, G Gréhan Journal of Quantitative Spectroscopy and Radiative Transfer 112 (1), 1-27, 2011 | 202 | 2011 |
A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile B Maheu, G Gouesbet, G Gréhan Journal of optics 19 (2), 59, 1988 | 200 | 1988 |
Generalized Lorenz–Mie theory and applications JA Lock, G Gouesbet Journal of Quantitative Spectroscopy and Radiative Transfer 110 (11), 800-807, 2009 | 199 | 2009 |
Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods G Gouesbet, G Grehan, B Maheu Applied Optics 27 (23), 4874-4883, 1988 | 186 | 1988 |
Integral localized approximation in generalized Lorenz–Mie theory KF Ren, G Gouesbet, G Gréhan Applied optics 37 (19), 4218-4225, 1998 | 183 | 1998 |
Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation G Grehan, B Maheu, G Gouesbet Applied Optics 25 (19), 3539-3548, 1986 | 175 | 1986 |