关注
Petra Poklukar
Petra Poklukar
在 kth.se 的电子邮件经过验证
标题
引用次数
引用次数
年份
Latent space roadmap for visual action planning of deformable and rigid object manipulation
M Lippi, P Poklukar, MC Welle, A Varava, H Yin, A Marino, D Kragic
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2020
612020
Geometric Multimodal Contrastive Representation Learning
P Poklukar, M Vasco, H Yin, FS Melo, A Paiva, D Kragic
International Conference on Machine Learning, 17782-17800, 2022
422022
Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic Platforms
A Ghadirzadeh, X Chen, P Poklukar, C Finn, M Björkman, D Kragic
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2021
282021
Enabling visual action planning for object manipulation through latent space roadmap
M Lippi, P Poklukar, MC Welle, A Varava, H Yin, A Marino, D Kragic
IEEE Transactions on Robotics 39 (1), 57-75, 2022
162022
Data-efficient visuomotor policy training using reinforcement learning and generative models
A Ghadirzadeh, P Poklukar, V Kyrki, D Kragic, M Björkman
arXiv preprint arXiv:2007.13134, 2020
142020
Delaunay Component Analysis for Evaluation of Data Representations
DK Petra Poklukar, Vladislav Polianskii, Anastasia Varava, Florian Pokorny
International Conference on Learning Representations, 2022
11*2022
GeomCA: Geometric Evaluation of Data Representations
P Poklukar, A Varava, D Kragic
Proceedings of the 38th International Conference on Machine Learning 139 …, 2021
112021
Latent space roadmap for visual action planning of deformable and rigid object manipulation. In 2020 IEEE
M Lippi, P Poklukar, MC Welle, A Varava, H Yin, A Marino, D Kragic
RSJ International Conference on Intelligent Robots and Systems (IROS), 5619-5626, 0
7
GMC-Geometric Multimodal Contrastive Representation Learning
P Poklukar, V Miguel, H Yin, FS Melo, A Paiva, D Kragic
International Conference on Machine Learning, 2022
52022
Augment-Connect-Explore: a Paradigm for Visual Action Planning with Data Scarcity
M Lippi, MC Welle, P Poklukar, A Marino, D Kragic
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2022
42022
Modeling assumptions and evaluation schemes: On the assessment of deep latent variable models.
J Bütepage, P Poklukar, D Kragic
CVPR Workshops, 9-12, 2019
42019
GraphDCA--a Framework for Node Distribution Comparison in Real and Synthetic Graphs
C Ceylan, P Poklukar, H Hultin, A Kravchenko, A Varava, D Kragic
arXiv preprint arXiv:2202.03884, 2022
32022
Batch Curation for Unsupervised Contrastive Representation Learning
MC Welle, P Poklukar, D Kragic
arXiv preprint arXiv:2108.08643, 2021
32021
Few-Shot Learning with Weak Supervision
A Ghadirzadeh, P Poklukar, X Chen, H Yao, H Azizpour, M Björkman, ...
Learning to Learn-Workshop at ICLR 2021, 2021
22021
Training and evaluation of deep policies using reinforcement learning and generative models
A Ghadirzadeh, P Poklukar, K Arndt, C Finn, V Kyrki, D Kragic, ...
Journal of machine learning research 23 (174), 1-37, 2022
12022
Hyperbolic Delaunay Geometric Alignment
AA Medbouhi, GL Marchetti, V Polianskii, A Kravberg, P Poklukar, ...
arXiv preprint arXiv:2404.08608, 2024
2024
Hyperbolic Delaunay Geometric Alignment
A Aiman Medbouhi, GL Marchetti, V Polianskii, A Kravberg, P Poklukar, ...
arXiv e-prints, arXiv: 2404.08608, 2024
2024
Learning and Evaluating the Geometric Structure of Representation Spaces
P Poklukar
KTH Royal Institute of Technology, 2022
2022
GraphDCA - a Framework for Node Distribution Comparison in Real and Synthetic Graphs
P Poklukar, C Ceylan, H Hultin, O Kravchenko, A Varava, D Kragic
2022
Seeing the whole picture instead of a single point: Self-supervised likelihood learning for deep generative models
P Poklukar, J Bütepage, D Kragic
Second Symposium on Advances in Approximate Bayesian Inference, 2019
2019
系统目前无法执行此操作,请稍后再试。
文章 1–20