Latent space roadmap for visual action planning of deformable and rigid object manipulation M Lippi, P Poklukar, MC Welle, A Varava, H Yin, A Marino, D Kragic 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2020 | 61 | 2020 |
Geometric Multimodal Contrastive Representation Learning P Poklukar, M Vasco, H Yin, FS Melo, A Paiva, D Kragic International Conference on Machine Learning, 17782-17800, 2022 | 42 | 2022 |
Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic Platforms A Ghadirzadeh, X Chen, P Poklukar, C Finn, M Björkman, D Kragic 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2021 | 28 | 2021 |
Enabling visual action planning for object manipulation through latent space roadmap M Lippi, P Poklukar, MC Welle, A Varava, H Yin, A Marino, D Kragic IEEE Transactions on Robotics 39 (1), 57-75, 2022 | 16 | 2022 |
Data-efficient visuomotor policy training using reinforcement learning and generative models A Ghadirzadeh, P Poklukar, V Kyrki, D Kragic, M Björkman arXiv preprint arXiv:2007.13134, 2020 | 14 | 2020 |
Delaunay Component Analysis for Evaluation of Data Representations DK Petra Poklukar, Vladislav Polianskii, Anastasia Varava, Florian Pokorny International Conference on Learning Representations, 2022 | 11* | 2022 |
GeomCA: Geometric Evaluation of Data Representations P Poklukar, A Varava, D Kragic Proceedings of the 38th International Conference on Machine Learning 139 …, 2021 | 11 | 2021 |
Latent space roadmap for visual action planning of deformable and rigid object manipulation. In 2020 IEEE M Lippi, P Poklukar, MC Welle, A Varava, H Yin, A Marino, D Kragic RSJ International Conference on Intelligent Robots and Systems (IROS), 5619-5626, 0 | 7 | |
GMC-Geometric Multimodal Contrastive Representation Learning P Poklukar, V Miguel, H Yin, FS Melo, A Paiva, D Kragic International Conference on Machine Learning, 2022 | 5 | 2022 |
Augment-Connect-Explore: a Paradigm for Visual Action Planning with Data Scarcity M Lippi, MC Welle, P Poklukar, A Marino, D Kragic 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2022 | 4 | 2022 |
Modeling assumptions and evaluation schemes: On the assessment of deep latent variable models. J Bütepage, P Poklukar, D Kragic CVPR Workshops, 9-12, 2019 | 4 | 2019 |
GraphDCA--a Framework for Node Distribution Comparison in Real and Synthetic Graphs C Ceylan, P Poklukar, H Hultin, A Kravchenko, A Varava, D Kragic arXiv preprint arXiv:2202.03884, 2022 | 3 | 2022 |
Batch Curation for Unsupervised Contrastive Representation Learning MC Welle, P Poklukar, D Kragic arXiv preprint arXiv:2108.08643, 2021 | 3 | 2021 |
Few-Shot Learning with Weak Supervision A Ghadirzadeh, P Poklukar, X Chen, H Yao, H Azizpour, M Björkman, ... Learning to Learn-Workshop at ICLR 2021, 2021 | 2 | 2021 |
Training and evaluation of deep policies using reinforcement learning and generative models A Ghadirzadeh, P Poklukar, K Arndt, C Finn, V Kyrki, D Kragic, ... Journal of machine learning research 23 (174), 1-37, 2022 | 1 | 2022 |
Hyperbolic Delaunay Geometric Alignment AA Medbouhi, GL Marchetti, V Polianskii, A Kravberg, P Poklukar, ... arXiv preprint arXiv:2404.08608, 2024 | | 2024 |
Hyperbolic Delaunay Geometric Alignment A Aiman Medbouhi, GL Marchetti, V Polianskii, A Kravberg, P Poklukar, ... arXiv e-prints, arXiv: 2404.08608, 2024 | | 2024 |
Learning and Evaluating the Geometric Structure of Representation Spaces P Poklukar KTH Royal Institute of Technology, 2022 | | 2022 |
GraphDCA - a Framework for Node Distribution Comparison in Real and Synthetic Graphs P Poklukar, C Ceylan, H Hultin, O Kravchenko, A Varava, D Kragic | | 2022 |
Seeing the whole picture instead of a single point: Self-supervised likelihood learning for deep generative models P Poklukar, J Bütepage, D Kragic Second Symposium on Advances in Approximate Bayesian Inference, 2019 | | 2019 |