A triangular canonical form for a class of 0-flat nonlinear systems S Bououden, D Boutat, G Zheng, JP Barbot, F Kratz International Journal of Control 84 (2), 261-269, 2011 | 124 | 2011 |
Nonasymptotic pseudo-state estimation for a class of fractional order linear systems X Wei, DY Liu, D Boutat IEEE Transactions on Automatic Control 62 (3), 1150-1164, 2016 | 102 | 2016 |
An observation algorithm for nonlinear systems with unknown inputs JP Barbot, D Boutat, T Floquet Automatica 45 (8), 1970-1974, 2009 | 85 | 2009 |
Single output-dependent observability normal form G Zheng, D Boutat, JP Barbot SIAM Journal on Control and Optimization 46 (6), 2242-2255, 2007 | 75 | 2007 |
New algorithm for observer error linearization with a diffeomorphism on the outputs D Boutat, A Benali, H Hammouri, K Busawon Automatica 45 (10), 2187-2193, 2009 | 73 | 2009 |
On observation of time-delay systems with unknown inputs G Zheng, JP Barbot, D Boutat, T Floquet, JP Richard IEEE Transactions on Automatic Control 56 (8), 1973-1978, 2011 | 70 | 2011 |
Innovative fractional derivative estimation of the pseudo-state for a class of fractional order linear systems YQ Wei, DY Liu, D Boutat Automatica 99, 157-166, 2019 | 68 | 2019 |
Non-asymptotic fractional order differentiator for a class of fractional order linear systems DY Liu, G Zheng, D Boutat, HR Liu Automatica 78, 61-71, 2017 | 61 | 2017 |
Identification of the delay parameter for nonlinear time-delay systems with unknown inputs G Zheng, JP Barbot, D Boutat Automatica 49 (6), 1755-1760, 2013 | 55 | 2013 |
Observability of the discrete state for dynamical piecewise hybrid systems S Chaib, D Boutat, A Benali, JP Barbot Nonlinear Analysis: Theory, Methods & Applications 63 (3), 423-438, 2005 | 55 | 2005 |
An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation DY Liu, Y Tian, D Boutat, TM Laleg-Kirati Signal Processing 116, 78-90, 2015 | 53 | 2015 |
On the transformation of nonlinear dynamical systems into the extended nonlinear observable canonical form D Boutat, K Busawon International Journal of Control 84 (1), 94-106, 2011 | 52 | 2011 |
A unified framework of stability theorems for LTI fractional order systems with 0< α< 2 X Zhang, C Lin, YQ Chen, D Boutat IEEE Transactions on Circuits and Systems II: Express Briefs 67 (12), 3237-3241, 2020 | 47 | 2020 |
A nonlinear Luenberger-like observer for nonlinear singular systems G Zheng, D Boutat, H Wang Automatica 86, 11-17, 2017 | 46 | 2017 |
Secure communication based on multi-input multi-output chaotic system with large message amplitude G Zheng, D Boutat, T Floquet, JP Barbot Chaos, Solitons & Fractals 41 (3), 1510-1517, 2009 | 43 | 2009 |
Backstepping observer-based output feedback control for a class of coupled parabolic PDEs with different diffusions BN Liu, D Boutat, DY Liu Systems & Control Letters 97, 61-69, 2016 | 38 | 2016 |
Sliding mode observers and observability singularity in chaotic synchronization L Boutat-Baddas, JP Barbot, D Boutat, R Tauleigne Mathematical problems in engineering 2004 (1), 11-31, 2004 | 36 | 2004 |
Modulating functions based model-free fractional order differentiators using a sliding integration window YQ Wei, DY Liu, D Boutat, HR Liu, ZH Wu Automatica 130, 109679, 2021 | 33 | 2021 |
Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials Y Chen, L Liu, D Liu, D Boutat Ain Shams Engineering Journal 9 (4), 1235-1241, 2018 | 33 | 2018 |
Lur’e Postnikov Lyapunov functional technique to global Mittag-Leffler stability of fractional-order neural networks with piecewise constant argument LF Wang, H Wu, DY Liu, D Boutat, YM Chen Neurocomputing 302, 23-32, 2018 | 33 | 2018 |