关注
Evgenii Tsymbalov
Evgenii Tsymbalov
Apptek
在 apptek.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Deep elastic strain engineering of bandgap through machine learning
Z Shi, E Tsymbalov, M Dao, S Suresh, A Shapeev, J Li
Proceedings of the National Academy of Sciences 116 (10), 4117-4122, 2019
962019
Dropout-based active learning for regression
E Tsymbalov, M Panov, A Shapeev
Analysis of Images, Social Networks and Texts: 7th International Conference …, 2018
642018
How certain is your Transformer?
A Shelmanov, E Tsymbalov, D Puzyrev, K Fedyanin, A Panchenko, ...
Proceedings of the 16th Conference of the European Chapter of the …, 2021
432021
Metallization of diamond
Z Shi, M Dao, E Tsymbalov, A Shapeev, J Li, S Suresh
Proceedings of the National Academy of Sciences 117 (40), 24634-24639, 2020
382020
Uncertainty estimation of transformer predictions for misclassification detection
A Vazhentsev, G Kuzmin, A Shelmanov, A Tsvigun, E Tsymbalov, ...
Proceedings of the 60th Annual Meeting of the Association for Computational …, 2022
292022
Deeper connections between neural networks and Gaussian processes speed-up active learning
E Tsymbalov, S Makarychev, A Shapeev, M Panov
arXiv preprint arXiv:1902.10350, 2019
272019
Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass
E Tsymbalov, Z Shi, M Dao, S Suresh, J Li, A Shapeev
npj Computational Materials 7 (1), 76, 2021
262021
Active learning and uncertainty estimation
A Shapeev, K Gubaev, E Tsymbalov, E Podryabinkin
Machine Learning Meets Quantum Physics, 309-329, 2020
212020
User-assisted log analysis for quality control of distributed fintech applications
I Itkin, A Gromova, A Sitnikov, D Legchikov, E Tsymbalov, R Yavorskiy, ...
2019 IEEE International Conference On Artificial Intelligence Testing …, 2019
152019
Compact difference scheme for parabolic and Schrödinger-type equations with variable coefficients
VA Gordin, EA Tsymbalov
Journal of Computational Physics 375, 1451-1468, 2018
152018
Dropout strikes back: Improved uncertainty estimation via diversity sampled implicit ensembles
E Tsymbalov, K Fedyanin, M Panov
CoRR, abs, 2020
12*2020
Compact difference schemes for the diffusion and Schrödinger equations. Approximation, stability, convergence, effectiveness, monotony
VA Gordin, EA Tsymbalov
Journal of Computational Mathematics, 348-370, 2014
122014
Climategpt: Towards ai synthesizing interdisciplinary research on climate change
D Thulke, Y Gao, P Pelser, R Brune, R Jalota, F Fok, M Ramos, I van Wyk, ...
arXiv preprint arXiv:2401.09646, 2024
62024
Churn prediction for game industry based on cohort classification ensemble
E Tsymbalov
52016
Fact-checking the output of large language models via token-level uncertainty quantification
E Fadeeva, A Rubashevskii, A Shelmanov, S Petrakov, H Li, H Mubarak, ...
arXiv preprint arXiv:2403.04696, 2024
42024
A fourth-order accurate difference scheme for a differential equation with variable coefficients
VA Gordin, EA Tsymbalov
Mathematical Models and Computer Simulations 10, 79-88, 2018
42018
Compact difference scheme for the differential equation with piecewise-constant coefficient
VA Gordin, EA Tsymbalov
Matematicheskoe modelirovanie 29 (12), 16-28, 2017
42017
Compact difference schemes for weakly-nonlinear parabolic and Schrodinger-type equations and systems
V Gordin, E Tsymbalov
arXiv preprint arXiv:1712.05185, 2017
32017
Elastic strain engineering of materials
M Dao, J Li, SHI Zhe, E Tsymbalov, A Shapeev, S Suresh
US Patent App. 17/283,949, 2021
22021
4 order difference scheme for the differential equation with variable coefficients
VA Gordin, EA Tsymbalov
Matematicheskoe modelirovanie 29 (7), 3-14, 2017
22017
系统目前无法执行此操作,请稍后再试。
文章 1–20