Machine learning approaches to drug response prediction: challenges and recent progress G Adam, L Rampášek, Z Safikhani, P Smirnov, B Haibe-Kains, ... NPJ precision oncology 4 (1), 19, 2020 | 274 | 2020 |
PharmacoGx: an R package for analysis of large pharmacogenomic datasets P Smirnov, Z Safikhani, N El-Hachem, D Wang, A She, C Olsen, ... Bioinformatics 32 (8), 1244-1246, 2016 | 268 | 2016 |
PharmacoDB: an integrative database for mining in vitro anticancer drug screening studies P Smirnov, V Kofia, A Maru, M Freeman, C Ho, N El-Hachem, GA Adam, ... Nucleic acids research 46 (D1), D994-D1002, 2018 | 146 | 2018 |
Consensus on molecular subtypes of high-grade serous ovarian carcinoma GM Chen, L Kannan, L Geistlinger, V Kofia, Z Safikhani, DMA Gendoo, ... Clinical Cancer Research 24 (20), 5037-5047, 2018 | 121 | 2018 |
Revisiting inconsistency in large pharmacogenomic studies Z Safikhani, P Smirnov, M Freeman, N El-Hachem, A She, Q Rene, ... F1000Research 5, 2016 | 118 | 2016 |
Consistency in drug response profiling: reply Z Safikhani, N El-Hachem, P Smirnov, M Freeman, A Goldenberg, ... Nature 540 (7631), E6-E8, 2016 | 105* | 2016 |
Drug response consistency in CCLE and CGP: reply Z Safikhani, N El-Hachem, P Smirnov, M Freeman, A Goldenberg, ... Nature 540 (7631), E11-E12, 2016 | 88* | 2016 |
Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer KL Thu, J Silvester, MJ Elliott, W Ba-Alawi, MH Duncan, AC Elia, AS Mer, ... Proceedings of the National Academy of Sciences 115 (7), E1570-E1577, 2018 | 73 | 2018 |
Gene isoforms as expression-based biomarkers predictive of drug response in vitro Z Safikhani, P Smirnov, KL Thu, J Silvester, N El-Hachem, R Quevedo, ... Nature Communications 8 (1), 1126, 2017 | 71 | 2017 |
Abstract: Gene isoforms as expression-based biomarkers predictive of drug response in vitro Z Safikhani, KL Thu, P Smironov, B Haibe-Kains Annals of Oncology 28 (suppl_1), 2017 | 71* | 2017 |
Consistency in large pharmacogenomic studies: reply Z Safikhani, N El-Hachem, P Smirnov, M Freeman, A Goldenberg, ... Nature 540 (7631), E2-E4, 2016 | 65* | 2016 |
Public data and open source tools for multi-assay genomic investigation of disease L Kannan, M Ramos, A Re, N El-Hachem, Z Safikhani, DMA Gendoo, ... Briefings in bioinformatics 17 (4), 603-615, 2016 | 60 | 2016 |
Integrative cancer pharmacogenomics to infer large-scale drug taxonomy N El-Hachem, DMA Gendoo, LS Ghoraie, Z Safikhani, P Smirnov, ... Cancer research 77 (11), 3057-3069, 2017 | 42 | 2017 |
Assessment of pharmacogenomic agreement Z Safikhani, N El-Hachem, R Quevedo, P Smirnov, A Goldenberg, ... F1000Research 5, 2016 | 38 | 2016 |
Assessment of genetic drift in large pharmacogenomic studies R Quevedo, P Smirnov, D Tkachuk, C Ho, N El-Hachem, Z Safikhani, ... Cell systems 11 (4), 393-401. e2, 2020 | 24 | 2020 |
Tissue specificity of in vitro drug sensitivity F Yao, SA Madani Tonekaboni, Z Safikhani, P Smirnov, N El-Hachem, ... Journal of the American Medical Informatics Association 25 (2), 158-166, 2018 | 23 | 2018 |
Orchestrating and sharing large multimodal data for transparent and reproducible research A Mammoliti, P Smirnov, M Nakano, Z Safikhani, C Eeles, H Seo, SK Nair, ... Nature communications 12 (1), 5797, 2021 | 20 | 2021 |
SSP: An interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads Z Safikhani, M Sadeghi, H Pezeshk, C Eslahchi Genomics 102 (5-6), 507-514, 2013 | 17 | 2013 |
Predicting drug properties with parameter-free machine learning: pareto-optimal embedded modeling (POEM) AE Brereton, S MacKinnon, Z Safikhani, S Reeves, S Alwash, V Shahani, ... Machine Learning: Science and Technology 1 (2), 025008, 2020 | 12 | 2020 |
Creating reproducible pharmacogenomic analysis pipelines A Mammoliti, P Smirnov, Z Safikhani, W Ba-Alawi, B Haibe-Kains Scientific data 6 (1), 166, 2019 | 12 | 2019 |