Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization JK Liu, HM Schreyer, A Onken, F Rozenblit, MH Khani, V Krishnamoorthy, ... Nature Communications 8 (1), 149, 2017 | 115* | 2017 |
Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains A Onken, JK Liu, PPCR Karunasekara, I Delis, T Gollisch, S Panzeri PLoS Computational Biology 12 (11), e1005189, 2016 | 71 | 2016 |
Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation A Onken, S Grünewälder, MHJ Munk, K Obermayer PLoS Computational Biology 5 (11), e1000577, 2009 | 68 | 2009 |
State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states T Tsunematsu, AA Patel, A Onken, S Sakata Elife 9, e52244, 2020 | 43 | 2020 |
Synthesizing realistic neural population activity patterns using generative adversarial networks M Molano-Mazon, A Onken, E Piasini, S Panzeri 6th International Conference on Learning Representations, ICLR 2018, 2018 | 35 | 2018 |
Information estimation using nonparametric copulas H Safaai, A Onken, CD Harvey, S Panzeri Physical Review E 98 (5), 053302, 2018 | 33 | 2018 |
Building population models for large-scale neural recordings: opportunities and pitfalls C Hurwitz, N Kudryashova, A Onken, MH Hennig Current Opinion in Neurobiology 70, 64-73, 2021 | 32 | 2021 |
Space-by-time decomposition for single-trial decoding of M/EEG activity I Delis, A Onken, PG Schyns, S Panzeri, MG Philiastides Neuroimage 133, 504-515, 2016 | 23 | 2016 |
Categorical encoding of decision variables in orbitofrontal cortex A Onken, J Xie, S Panzeri, C Padoa-Schioppa PLoS Computational Biology 15 (10), 2019 | 22 | 2019 |
Mixed vine copulas as joint models of spike counts and local field potentials A Onken, S Panzeri Advances In Neural Information Processing Systems 30, 1325-1333, 2016 | 19 | 2016 |
Neural system identification with spike-triggered non-negative matrix factorization S Jia, Z Yu, A Onken, Y Tian, T Huang, JK Liu IEEE Transactions on Cybernetics, 1-12, 2021 | 18* | 2021 |
Understanding neural population coding: Information theoretic insights from the auditory system A Onken, PPCR Karunasekara, C Kayser, S Panzeri Advances in Neuroscience 2014 (1), 907851, 2014 | 17 | 2014 |
Modeling short-term noise dependence of spike counts in macaque prefrontal cortex A Onken, S Grünewälder, M Munk, K Obermayer Advances in Neural Information Processing Systems 21, 1233-1240, 2008 | 13 | 2008 |
Calciumgan: a generative adversarial network model for synthesising realistic calcium imaging data of neuronal populations BM Li, T Amvrosiadis, N Rochefort, A Onken arXiv preprint arXiv:2009.02707 10, 2020 | 9 | 2020 |
A maximum entropy test for evaluating higher-order correlations in spike counts A Onken, V Dragoi, K Obermayer PLoS Computational Biology 8 (6), e1002539, 2012 | 8 | 2012 |
Analysis of Video Feature Learning in Two-Stream CNNs on the Example of Zebrafish Swim Bout Classification B Breier, A Onken 8th International Conference on Learning Representations, ICLR 2020, 2019 | 7 | 2019 |
A Frank mixture copula family for modeling higher-order correlations of neural spike counts A Onken, K Obermayer Journal of Physics: Conference Series 197 (1), 012019, 2009 | 7 | 2009 |
V1T: large-scale mouse V1 response prediction using a Vision Transformer BM Li, IM Cornacchia, NL Rochefort, A Onken Transactions on Machine Learning Research, 2023 | 3 | 2023 |
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships N Kudryashova, T Amvrosiadis, N Dupuy, N Rochefort, A Onken PLoS Computational Biology 18 (1), 1-30, 2022 | 3 | 2022 |
Space-by-time tensor decomposition for single-trial analysis of neural signals I Delis, A Onken, S Panzeri Mathematical and Theoretical Neuroscience: Cell, Network and Data Analysis …, 2017 | 3 | 2017 |