关注
Peter Potash
Peter Potash
Microsoft Turing Montreal
在 microsoft.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Ghostwriter: Using an lstm for automatic rap lyric generation
P Potash, A Romanov, A Rumshisky
Proceedings of the 2015 Conference on Empirical Methods in Natural Language …, 2015
1502015
Here's my point: Joint pointer architecture for argument mining
P Potash, A Romanov, A Rumshisky
arXiv preprint arXiv:1612.08994, 2016
872016
Semeval-2017 task 6:# hashtagwars: Learning a sense of humor
P Potash, A Romanov, A Rumshisky
Proceedings of the 11th International Workshop on Semantic Evaluation …, 2017
862017
Operationalizing the legal principle of data minimization for personalization
AJ Biega, P Potash, H Daumé, F Diaz, M Finck
Proceedings of the 43rd international ACM SIGIR conference on research and …, 2020
642020
Towards debate automation: a recurrent model for predicting debate winners
P Potash, A Rumshisky
Proceedings of the 2017 Conference on Empirical Methods in Natural Language …, 2017
332017
Twitterhawk: A feature bucket based approach to sentiment analysis
W Boag, P Potash, A Rumshisky
Proceedings of the 9th International Workshop on Semantic Evaluation …, 2015
242015
Length, interchangeability, and external knowledge: Observations from predicting argument convincingness
P Potash, R Bhattacharya, A Rumshisky
Proceedings of the Eighth International Joint Conference on Natural Language …, 2017
172017
Combining network and language indicators for tracking conflict intensity
A Rumshisky, M Gronas, P Potash, M Dubov, A Romanov, S Kulshreshtha, ...
Social Informatics: 9th International Conference, SocInfo 2017, Oxford, UK …, 2017
162017
Ranking passages for argument convincingness
P Potash, A Ferguson, TJ Hazen
Proceedings of the 6th Workshop on Argument Mining, 146-155, 2019
152019
Evaluating creative language generation: The case of rap lyric ghostwriting
P Potash, A Romanov, A Rumshisky
arXiv preprint arXiv:1612.03205, 2016
112016
# hashtagwars: Learning a sense of humor
P Potash, A Romanov, A Rumshisky
arXiv preprint arXiv:1612.03216, 2016
92016
Simihawk at semeval-2016 task 1: A deep ensemble system for semantic textual similarity
P Potash, W Boag, A Romanov, V Ramanishka, A Rumshisky
Proceedings of the 10th International Workshop on Semantic Evaluation …, 2016
92016
Using topic modeling and text embeddings to predict deleted tweets
PJ Potash, EB Bell, JJ Harrison
Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2016
82016
Recommender System Incorporating User Personality Profile through Analysis of Written Reviews.
P Potash, A Rumshisky
EMPIRE@ RecSys, 60-66, 2016
52016
Here's My Point: Argumentation Mining with Pointer Networks
P Potash, A Romanov, A Rumshisky
42016
Prompt Discriminative Language Models for Domain Adaptation
K Lu, P Potash, X Lin, Y Sun, Z Qian, Z Yuan, T Naumann, T Cai, J Lu
Proceedings of the 5th Clinical Natural Language Processing Workshop, 247-258, 2023
32023
Tracking bias in news sources using social media: The Russia-Ukraine maidan crisis of 2013–2014
P Potash, A Romanov, M Gronas, A Rumshisky
Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets …, 2017
32017
Predictive model for ranking argument convincingness of text passages
P Potash, TJ Hazen
US Patent App. 16/785,359, 2021
22021
Playing log (n)-questions over sentences
P Potash, K Suleman
arXiv preprint arXiv:1908.04660, 2019
22019
Training a Model in a Data-Scarce Environment Using Added Parameter Information
PJ Potash
US Patent App. 17/321,161, 2022
12022
系统目前无法执行此操作,请稍后再试。
文章 1–20