Fedgraphnn: A federated learning system and benchmark for graph neural networks C He, K Balasubramanian, E Ceyani, C Yang, H Xie, L Sun, L He, L Yang, ... arXiv preprint arXiv:2104.07145, 2021 | 153 | 2021 |
Federated graph classification over non-iid graphs H Xie, J Ma, L Xiong, C Yang Advances in neural information processing systems 34, 18839-18852, 2021 | 115 | 2021 |
Fedgraphnn: A federated learning benchmark system for graph neural networks C He, K Balasubramanian, E Ceyani, C Yang, H Xie, L Sun, L He, L Yang, ... ICLR 2021 Workshop on Distributed and Private Machine Learning (DPML), 2021 | 22 | 2021 |
Federated node classification over graphs with latent link-type heterogeneity H Xie, L Xiong, C Yang Proceedings of the ACM Web Conference 2023, 556-566, 2023 | 13 | 2023 |
Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help Multiple Graph Applications H Xie, D Zheng, J Ma, H Zhang, VN Ioannidis, X Song, Q Ping, S Wang, ... Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023 | 12 | 2023 |
Subgraph federated learning over heterogeneous graphs K Zhang, H Xie, Z Gu, X Li, L Sun, SM Yiu, Y Yao, C Yang FedGraph-CIKM, 2022 | 3 | 2022 |
Detecting transcriptomic structural variants in heterogeneous contexts via the Multiple Compatible Arrangements Problem Y Qiu, C Ma, H Xie, C Kingsford Algorithms for Molecular Biology 15 (1), 9, 2020 | 3 | 2020 |
FedBrain: Federated Training of Graph Neural Networks for Connectome-based Brain Imaging Analysis Y Yang, H Xie, H Cui, C Yang PACIFIC SYMPOSIUM ON BIOCOMPUTING 2024, 214-225, 2023 | 1 | 2023 |
Federated learning for cross-institution brain network analysis H Xie, Y Yang, H Cui, C Yang Medical Imaging 2024: Computer-Aided Diagnosis 12927, 106-119, 2024 | | 2024 |