Variational methods in imaging O Scherzer, M Grasmair, H Grossauer, M Haltmeier, F Lenzen Springer Science+ Business Media LLC, 2009 | 893 | 2009 |
Inversion of spherical means and the wave equation in even dimensions D Finch, M Haltmeier, Rakesh SIAM Journal of Applied Mathematics 68 (2), 2007 | 299 | 2007 |
Deep learning for photoacoustic tomography from sparse data S Antholzer, M Haltmeier, J Schwab Inverse problems in science and engineering 27 (7), 987-1005, 2019 | 285 | 2019 |
NETT: Solving inverse problems with deep neural networks H Li, J Schwab, S Antholzer, M Haltmeier Inverse Problems 36 (6), 065005, 2020 | 275 | 2020 |
Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface P Burgholzer, GJ Matt, M Haltmeier, G Paltauf Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 75 (4 …, 2007 | 267 | 2007 |
Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector G Paltauf, R Nuster, M Haltmeier, P Burgholzer Applied Optics 46 (16), 3352-3358, 2007 | 248 | 2007 |
Sparse regularization with lq penalty term M Grasmair, M Haltmeier, O Scherzer Inverse Problems 24 (5), 055020, 2008 | 238 | 2008 |
A machine learning framework for customer purchase prediction in the non-contractual setting A Martínez, C Schmuck, S Pereverzyev Jr, C Pirker, M Haltmeier European Journal of Operational Research 281 (3), 588-596, 2020 | 221 | 2020 |
Thermoacoustic tomography with integrating area and line detectors P Burgholzer, C Hofer, G Paltauf, M Haltmeier, O Scherzer IEEE Trans. on Ultrasonics, Ferroelectrics and Frequ. Control. 52 (9), 1577-1583, 2005 | 185 | 2005 |
Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors G Paltauf, R Nuster, M Haltmeier, P Burgholzer Inverse Problems 23, S81–S94, 2007 | 181 | 2007 |
Thermoacoustic computed tomography with large planar receivers M Haltmeier, O Scherzer, P Burgholzer, G Paltauf Inverse problems 20 (5), 1663, 2004 | 177 | 2004 |
Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors P Burgholzer, J Bauer-Marschallinger, H Grün, M Haltmeier, G Paltauf Inverse Problems 23, S65–S80, 2007 | 174 | 2007 |
Necessary and sufficient conditions for linear convergence of ℓ1‐regularization M Grasmair, O Scherzer, M Haltmeier Communications on Pure and Applied Mathematics 64 (2), 161-182, 2011 | 173 | 2011 |
Filtered backprojection for thermoacoustic computed tomography in spherical geometry M Haltmeier, T Schuster, O Scherzer Mathematical Methods in the Applied Sciences 28 (16), 1919-1937, 2005 | 159 | 2005 |
Pipe failure modelling for water distribution networks using boosted decision trees D Winkler, M Haltmeier, M Kleidorfer, W Rauch, F Tscheikner-Gratl Structure and Infrastructure Engineering 14 (10), 1402-1411, 2018 | 149 | 2018 |
Deep null space learning for inverse problems: convergence analysis and rates J Schwab, S Antholzer, M Haltmeier Inverse Problems 35 (2), 025008, 2019 | 115 | 2019 |
Kaczmarz methods for regularizing nonlinear ill-posed equations I: Convergence analysis M Haltmeier, A Leitao, O Scherzer Inverse Problems and Imaging 1 (2), 289, 2007 | 112 | 2007 |
Thermoacoustic tomography and the circular Radon transform: exact inversion formula M Haltmeier, O Scherzer, P Burgholzer, R Nuster, G Paltauf Mathematical Models and Methods in Applied Sciences 17 (4), 635-655, 2007 | 111 | 2007 |
Universal inversion formulas for recovering a function from spherical means M Haltmeier SIAM Journal on Mathematical Analysis 46 (1), 214-232, 2014 | 92 | 2014 |
Image-based fashion product recommendation with deep learning H Tuinhof, C Pirker, M Haltmeier Machine Learning, Optimization, and Data Science: 4th International …, 2019 | 87 | 2019 |