关注
Michael Volpp
Michael Volpp
Karlsruhe Institute of Technology, Bosch Center for Artificial Intelligence
在 kit.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization
M Volpp, LP Fröhlich, K Fischer, A Doerr, S Falkner, F Hutter, C Daniel
ICLR 2020, 2019
822019
Prodmp: A unified perspective on dynamic and probabilistic movement primitives
G Li, Z Jin, M Volpp, F Otto, R Lioutikov, G Neumann
IEEE Robotics and Automation Letters 8 (4), 2325-2332, 2023
302023
Bayesian Context Aggregation for Neural Processes
M Volpp, F Flürenbrock, L Grossberger, C Daniel, G Neumann
ICLR 2021, 2021
302021
What matters for meta-learning vision regression tasks?
N Gao, H Ziesche, NA Vien, M Volpp, G Neumann
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
282022
Factorization with a logarithmic energy spectrum of a two-dimensional potential
F Gleisberg, M Volpp, WP Schleich
Physics Letters A 379 (40-41), 2556-2560, 2015
72015
Trajectory-Based Off-Policy Deep Reinforcement Learning
A Doerr, M Volpp, M Toussaint, S Trimpe, C Daniel
ICML 2019, 2019
62019
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
O Arenz, P Dahlinger, Z Ye, M Volpp, G Neumann
TMLR 2023, 2023
52023
Beyond Deep Ensembles--A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift
F Seligmann, P Becker, M Volpp, G Neumann
NeurIPS 2023, 2023
42023
Standard development process for physical models used in real time applications based on the example of an exhaust pipe model
A Gallet, M Volpp, W Lengerer
Technical report, Robert Bosch GmbH, 2014
42014
Method and device for training a machine learning system
G Neumann, M Volpp
US Patent App. 17/449,517, 2022
32022
Accurate Bayesian Meta-Learning by Accurate Task Posterior Inference
M Volpp, P Dahlinger, P Becker, C Daniel, G Neumann
ICLR 2023, 2023
22023
Method for ascertaining an output signal with the aid of a machine learning system
G Neumann, M Volpp
US Patent App. 17/449,139, 2022
22022
Stable Optimization of Gaussian Likelihoods
D Megerle, F Otto, M Volpp, G Neumann
12023
Method for estimating model uncertainties with the aid of a neural network and an architecture of the neural network
G Neumann, M Volpp
US Patent App. 18/349,571, 2024
2024
Latent Task-Specific Graph Network Simulators
P Dahlinger, N Freymuth, M Volpp, T Hoang, G Neumann
arXiv preprint arXiv:2311.05256, 2023
2023
Method for assessing model uncertainties with the aid of a neural network and an architecture of the neural network
G Neumann, M Volpp
US Patent App. 18/187,128, 2023
2023
Method for training a conditional neural process for determining a position of an object from image data
N Gao, AV Ngo, G Neumann, H Ziesche, M Volpp
US Patent App. 18/167,733, 2023
2023
Configuring a system which interacts with an environment
A Doerr, C Daniel, M Volpp
US Patent 11,402,808, 2022
2022
Bayesian context aggregation for neural processes
G Neumann, M Volpp
US Patent App. 17/446,676, 2022
2022
Running of Radiative Neutrino Masses - A Study of the Zee-Babu Model
M Volpp
Max Planck Institute for Physics Munich, 2017
2017
系统目前无法执行此操作,请稍后再试。
文章 1–20