关注
Thijs Vogels
Thijs Vogels
Microsoft Research AI for Science
在 microsoft.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Kernel-predicting convolutional networks for denoising Monte Carlo renderings.
S Bako, T Vogels, B McWilliams, M Meyer, J Novák, A Harvill, P Sen, ...
ACM Trans. Graph. 36 (4), 97:1-97:14, 2017
3462017
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
T Vogels, SP Karimireddy, M Jaggi
NeurIPS 2019, 14259-14268, 2019
3292019
Denoising with kernel prediction and asymmetric loss functions
T Vogels, F Rousselle, B McWilliams, G Röthlin, A Harvill, D Adler, ...
ACM Transactions on Graphics (TOG) 37 (4), 1-15, 2018
1942018
Denoising Monte Carlo renderings using machine learning with importance sampling
T Vogels, F Rousselle, B McWilliams, M Meyer, J Novak
US Patent 10,572,979, 2020
712020
Relaysum for decentralized deep learning on heterogeneous data
T Vogels, L He, A Koloskova, SP Karimireddy, T Lin, SU Stich, M Jaggi
Advances in Neural Information Processing Systems 34, 28004-28015, 2021
632021
Optimizer benchmarking needs to account for hyperparameter tuning
PT Sivaprasad, F Mai, T Vogels, M Jaggi, F Fleuret
International conference on machine learning, 9036-9045, 2020
57*2020
Kernel-predicting convolutional neural networks for denoising
T Vogels, J Novák, F Rousselle, B McWilliams
US Patent 10,475,165, 2019
572019
Web2text: Deep structured boilerplate removal
T Vogels, OE Ganea, C Eickhoff
Advances in Information Retrieval: 40th European Conference on IR Research …, 2018
572018
Practical low-rank communication compression in decentralized deep learning
T Vogels, SP Karimireddy, M Jaggi
Advances in Neural Information Processing Systems 33, 14171-14181, 2020
51*2020
Denoising monte carlo renderings using progressive neural networks
T Vogels, F Rousselle, B McWilliams, M Meyer, J Novak
US Patent 10,607,319, 2020
432020
Denoising Monte Carlo renderings using generative adversarial neural networks
T Vogels, F Rousselle, B McWilliams, M Meyer, J Novak
US Patent 10,586,310, 2020
282020
Beyond spectral gap: The role of the topology in decentralized learning
T Vogels, H Hendrikx, M Jaggi
Advances in Neural Information Processing Systems 35, 15039-15050, 2022
272022
Denoising Monte Carlo renderings using neural networks with asymmetric loss
T Vogels, F Rousselle, J Novak, B McWilliams, M Meyer, A Harvill
US Patent 10,699,382, 2020
242020
Deep Compositional Denoising for High‐quality Monte Carlo Rendering
X Zhang, M Manzi, T Vogels, H Dahlberg, M Gross, M Papas
Computer Graphics Forum 40 (4), 1-13, 2021
142021
Denoising Monte Carlo renderings using machine learning with importance sampling
T Vogels, F Rousselle, B McWilliams, M Meyer, J Novak
US Patent 10,789,686, 2020
122020
Temporal techniques of denoising Monte Carlo renderings using neural networks
T Vogels, F Rousselle, J Novak, B McWilliams, M Meyer, A Harvill
US Patent 11,532,073, 2022
102022
Multi-scale architecture of denoising monte carlo renderings using neural networks
T Vogels, F Rousselle, J Novak, B McWilliams, M Meyer, A Harvill
US Patent 10,672,109, 2020
102020
Towards a Burglary Risk Profiler Using Demographic and Spatial Factors
C Kadar, G Zanni, T Vogels, I Pletikosa
Web Information Systems Engineering (WISE) 16, 586-600, 2015
92015
Exponential moving average of weights in deep learning: Dynamics and benefits
D Morales-Brotons, T Vogels, H Hendrikx
Transactions on Machine Learning Research, 2024
82024
Multimodn—multimodal, multi-task, interpretable modular networks
V Swamy, M Satayeva, J Frej, T Bossy, T Vogels, M Jaggi, T Käser, ...
Advances in Neural Information Processing Systems 36, 2024
62024
系统目前无法执行此操作,请稍后再试。
文章 1–20