关注
Jungseul Ok
Jungseul Ok
Assistant Professor, CSE/AI, POSTECH
在 postech.ac.kr 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Gradient inversion with generative image prior
J Jeon, K Lee, S Oh, J Ok
Advances in neural information processing systems 34, 29898-29908, 2021
1312021
Exploration in structured reinforcement learning
J Ok, A Proutiere, D Tranos
Advances in Neural Information Processing Systems 31, 2018
722018
Optimal rate sampling in 802.11 systems: Theory, design, and implementation
R Combes, J Ok, A Proutiere, D Yun, Y Yi
IEEE Transactions on Mobile Computing 18 (5), 1145-1158, 2018
622018
Optimal rate sampling in 802.11 systems
R Combes, A Proutiere, D Yun, J Ok, Y Yi
IEEE INFOCOM 2014-IEEE Conference on Computer Communications, 2760-2767, 2014
552014
Optimality of belief propagation for crowdsourced classification
J Ok, S Oh, J Shin, Y Yi
International Conference on Machine Learning, 535-544, 2016
512016
Embedding of virtual network requests over static wireless multihop networks
D Yun, J Ok, B Shin, S Park, Y Yi
Computer Networks 57 (5), 1139-1152, 2013
422013
Towards sequence-level training for visual tracking
M Kim, S Lee, J Ok, B Han, M Cho
European Conference on Computer Vision, 534-551, 2022
332022
On maximizing diffusion speed in social networks: impact of random seeding and clustering
J Ok, Y Jin, J Shin, Y Yi
The 2014 ACM international conference on Measurement and modeling of …, 2014
252014
Combating label distribution shift for active domain adaptation
S Hwang, S Lee, S Kim, J Ok, S Kwak
European Conference on Computer Vision, 549-566, 2022
162022
On Maximizing Diffusion Speed Over Social Networks With Strategic Users
J Ok, Y Jin, J Shin, Y Yi
IEEE/ACM Transactions on Networkings 24 (6), 2016
162016
Combinatorial pure exploration with continuous and separable reward functions and its applications.
W Huang, J Ok, L Li, W Chen
IJCAI, 2291-2297, 2018
132018
Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning
B Ko, J Ok
arXiv preprint arXiv:2206.00518, 2022
12*2022
Iterative bayesian learning for crowdsourced regression
J Ok, S Oh, Y Jang, J Shin, Y Yi
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
11*2019
Few-shot unlearning by model inversion
Y Yoon, J Nam, H Yun, J Lee, D Kim, J Ok
arXiv preprint arXiv:2205.15567, 2022
102022
Learning continuous representation of audio for arbitrary scale super resolution
J Kim, Y Lee, S Hong, J Ok
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
102022
On the impact of global information on diffusion of innovations over social networks
Y Jin, J Ok, Y Yi, J Shin
2013 Proceedings IEEE INFOCOM, 3267-3272, 2013
102013
Iterative learning of graph connectivity from partially-observed cascade samples
J Woo, J Ok, Y Yi
Proceedings of the Twenty-First International Symposium on Theory …, 2020
72020
Learn what you want to unlearn: Unlearning inversion attacks against machine unlearning
H Hu, S Wang, T Dong, M Xue
arXiv preprint arXiv:2404.03233, 2024
62024
Leveraging proxy of training data for test-time adaptation
J Kang, N Kim, D Kwon, J Ok, S Kwak
62023
Adaptive superpixel for active learning in semantic segmentation
H Kim, M Oh, S Hwang, S Kwak, J Ok
Proceedings of the IEEE/CVF International Conference on Computer Vision, 943-953, 2023
52023
系统目前无法执行此操作,请稍后再试。
文章 1–20