Music transcription modelling and composition using deep learning BL Sturm, JF Santos, O Ben-Tal, I Korshunova Proc. 1st Conference on Computer Simulation of Musical Creativity, 2016 | 216 | 2016 |
Local interpretable model agnostic explanations for music content analysis S Mishra, BL Sturm, S Dixon Proc. ISMIR, 2017 | 178 | 2017 |
Deep learning and music adversaries C Kereliuk, BL Sturm, J Larsen IEEE Transactions on Multimedia 17 (11), 2059-2071, 2015 | 178 | 2015 |
Classification accuracy is not enough: On the evaluation of music genre recognition systems BL Sturm Journal of Intelligent Information Systems, 2013 | 178 | 2013 |
A survey of evaluation in music genre recognition BL Sturm Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation 8382, 29-66, 2014 | 177 | 2014 |
A Simple Method to Determine if a Music Information Retrieval System is a “Horse” B Sturm IEEE Trans. Multimedia 16 (6), 1636-1644, 2014 | 165 | 2014 |
An analysis of the GTZAN music genre dataset BL Sturm Proceedings of the second international ACM workshop on Music information …, 2012 | 165 | 2012 |
Comparison of orthogonal matching pursuit implementations BL Sturm, M Christensen Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th …, 2012 | 161 | 2012 |
The GTZAN dataset: Its contents, its faults, their effects on evaluation, and its future use BL Sturm arXiv preprint arXiv:1306.1461, 2013 | 159 | 2013 |
The state of the art ten years after a state of the art: Future research in music information retrieval BL Sturm Journal of new music research 43 (2), 147-172, 2014 | 127 | 2014 |
Machine learning research that matters for music creation: A case study BL Sturm, O Ben-Tal, Ú Monaghan, N Collins, D Herremans, E Chew, ... Journal of New Music Research 48 (1), 36-55, 2019 | 115 | 2019 |
Artificial intelligence and music: open questions of copyright law and engineering praxis BLT Sturm, M Iglesias, O Ben-Tal, M Miron, E Gómez Arts 8 (3), 115, 2019 | 102 | 2019 |
Ensemble models for spoofing detection in automatic speaker verification B Chettri, D Stoller, V Morfi, MAM Ramírez, E Benetos, BL Sturm arXiv preprint arXiv:1904.04589, 2019 | 96 | 2019 |
Ethical dimensions of music information retrieval technology A Holzapfel, B Sturm, M Coeckelbergh Transactions of the International Society for Music Information Retrieval 1 …, 2018 | 71 | 2018 |
Taking the models back to music practice: Evaluating generative transcription models built using deep learning BL Sturm, O Ben-Tal Journal of Creative Music Systems 2, 32-60, 2017 | 51 | 2017 |
Adaptive Concatenative Sound Synthesis and Its Application to Micromontage Compositior BL Sturm Computer Music Journal 30 (4), 46-66, 2006 | 47 | 2006 |
MATConcat: An Application for Exploring Concatenative Sound Synthesis Using MATLAB. BL Sturm ICMC, 2004 | 45 | 2004 |
Musical instrument identification using multiscale mel-frequency cepstral coefficients BL Sturm, M Morvidone, L Daudet Signal Processing Conference (EUSIPCO), 2010 Proceedings of the 18th European, 2010 | 43 | 2010 |
The beyond the fence musical and computer says show documentary S Colton, MT Llano, R Hepworth, J Charnley, CV Gale, A Baron, F Pachet, ... arXiv preprint arXiv:2206.03224, 2022 | 38 | 2022 |
A multimodal system for gesture recognition in interactive music performance D Overholt, J Thompson, L Putnam, B Bell, J Kleban, B Sturm, ... Computer Music Journal 33 (4), 69-82, 2009 | 38 | 2009 |