关注
Takuya Kurihana
Takuya Kurihana
Oak Ridge National Laboratory
在 uchicago.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Data-Driven Cloud Clustering via a Rotationally Invariant Autoencoder
T Kurihana, E Moyer, R Willett, D Gilton, I Foster
IEEE Transactions on Geoscience and Remote Sensing, 1-25, 2021
182021
AICCA: AI-driven cloud classification atlas
T Kurihana, EJ Moyer, IT Foster
Remote Sensing 14 (22), 5690, 2022
142022
Cloud characterization with unsupervised deep learning,
T Kurihana, I Foster, R Willett, S Jenkins, K Koenig, R Werman, ...
Proceedings for Climate Informatics Workshop 2019 Paris, 2019
9*2019
Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites
A Meray, L Wang, T Kurihana, I Mastilovic, S Praveen, Z Xu, ...
Computers & Geosciences 183, 105508, 2024
62024
Perturbations by the ensemble transform
K Saito, L Duc, T Matsunobu, T Kurihana
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol …, 2022
32022
Developing unsupervised learning models for cloud classification
S Jenkins, EJ Moyer, I Foster, T Kurihana, R Willett, M Maire, K Koenig, ...
AGU Fall Meeting Abstracts 2019, A51U-2673, 2019
22019
Identifying Climate Patterns using Clustering Autoencoder Techniques
T Kurihana, I Mastilovic, L Wang, A Meray, S Praveen, Z Xu, ...
Artificial Intelligence for the Earth Systems, 2024
12024
Multi-scale Digital Twin: Developing a fast and physics-informed surrogate model for groundwater contamination with uncertain climate models
L Wang, T Kurihana, A Meray, I Mastilovic, S Praveen, Z Xu, ...
arXiv preprint arXiv:2211.10884, 2022
12022
A data-driven cloud classification framework based on a rotationally invariant autoencoder
T Kurihana, I Foster, R Willett, M Maire, S Jenkins, A Matai, EJ Moyer
AGU Fall Meeting Abstracts 2020, A059-0003, 2020
12020
Cloud Characterization With Deep Learning II
T Kurihana, I Foster, EJ Moyer, R Willett, M Maire, S Jenkins, K Koenig, ...
AGU Fall Meeting Abstracts 2019, A53H-03, 2019
12019
Perturbation Methods for Ensemble Data Assimilation
K Saito, M Kunii, L Duc, T Kurihana
RIKEN International Symposium on Data Assimilation, Kobe, Japan.[Available …, 2017
12017
Exploring Vision Transformers on the Frontier Supercomputer for Remote Sensing and Geoscientific Applications
V Anantharaj, T Kurihana, S Dash, G Padovani, S Fiore
IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium …, 2024
2024
An Investigation of Multiple Classifications of Clouds Over Mid-latitude Cyclones
AJ Schuddeboom, T Kurihana, IT Foster, AJ McDonald, C McErlich, ...
Authorea Preprints, 2024
2024
Pretraining a foundation model using MODIS observations of the earth’s atmosphere
V Anantharaj, T Kurihana, G Padovani, A Kumar, A Tsaris, U Nair, S Fiore, ...
EGU24, 2024
2024
Democratizing Access to Extensive Climate Datasets via Deep Learning-Powered Techniques
T Kurihana
The University of Chicago, 2024
2024
A 3D super-resolution of wind fields via physics-informed pixel-wise self-attention generative adversarial network
T Kurihana, K Yeo, D Szwarcman, B Elmegreen, K Mukkavilli, J Schmude, ...
arXiv preprint arXiv:2312.13212, 2023
2023
Automated cloud classification via vision transformers for self-supervised semantic segmentation
JA Franke, T Kurihana, EJ Moyer, IT Foster
AGU23, 2023
2023
Deep Learning in Climate, Weather, and Earth Sciences II Oral
DD Lucas, T Kurihana, D Watson-Parris, JA Franke, EJ Moyer, I Foster
AGU23, 2023
2023
A 3D spatial self-attention module on a non-uniform vertical coordinate for super-resolution wind fields
T Kurihana, K Yeo, D Szwarcman, B Elmegreen, SK Mukkavilli
AGU Fall Meeting Abstracts 2023 (6), A12H-06, 2023
2023
SCuBA: Self-supervised Cloud Bias Assessment for evaluating cloud representations from high-resolution climate models against MODIS cloud images
T Kurihana, JA Franke, VG Anantharaj, I Foster, EJ Moyer
AGU Fall Meeting Abstracts 2023 (1226), GC23M-1226, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20