关注
Bharath Ramsundar
Bharath Ramsundar
Deep Forest Sciences, DeepChem, previously Computable, previously Stanford
在 stanford.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
A guide to deep learning in healthcare
A Esteva, A Robicquet, B Ramsundar, V Kuleshov, M DePristo, K Chou, ...
Nature medicine 25 (1), 24-29, 2019
29622019
MoleculeNet: a benchmark for molecular machine learning
Z Wu, B Ramsundar, EN Feinberg, J Gomes, C Geniesse, AS Pappu, ...
Chemical science 9 (2), 513-530, 2018
24722018
Low data drug discovery with one-shot learning
H Altae-Tran, B Ramsundar, AS Pappu, V Pande
ACS central science 3 (4), 283-293, 2017
8432017
Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more
B Ramsundar, P Eastman, P Walters, V Pande
" O'Reilly Media, Inc.", 2019
608*2019
Massively multitask networks for drug discovery
B Ramsundar, S Kearnes, P Riley, D Webster, D Konerding, V Pande
arXiv preprint arXiv:1502.02072, 2015
5922015
Non-volatile key-value store
N Talagala, S Sundararaman, B Ramsundar, A Batwara
US Patent 9,075,710, 2015
5072015
Retrosynthetic reaction prediction using neural sequence-to-sequence models
B Liu, B Ramsundar, P Kawthekar, J Shi, J Gomes, Q Luu Nguyen, S Ho, ...
ACS central science 3 (10), 1103-1113, 2017
4882017
Scientific discovery in the age of artificial intelligence
H Wang, T Fu, Y Du, W Gao, K Huang, Z Liu, P Chandak, S Liu, ...
Nature 620 (7972), 47-60, 2023
3972023
ChemBERTa: large-scale self-supervised pretraining for molecular property prediction
S Chithrananda, G Grand, B Ramsundar
arXiv preprint arXiv:2010.09885, 2020
3702020
PotentialNet for molecular property prediction
EN Feinberg, D Sur, Z Wu, BE Husic, H Mai, Y Li, S Sun, J Yang, ...
ACS central science 4 (11), 1520-1530, 2018
3622018
Conditional iteration for a non-volatile device
B Ramsundar, N Talagala, S Sundararaman
US Patent 9,519,575, 2016
2782016
Computational modeling of β-secretase 1 (BACE-1) inhibitors using ligand based approaches
G Subramanian, B Ramsundar, V Pande, RA Denny
Journal of chemical information and modeling 56 (10), 1936-1949, 2016
2652016
Is multitask deep learning practical for pharma?
B Ramsundar, B Liu, Z Wu, A Verras, M Tudor, RP Sheridan, V Pande
Journal of chemical information and modeling 57 (8), 2068-2076, 2017
2632017
Atomic convolutional networks for predicting protein-ligand binding affinity
J Gomes, B Ramsundar, EN Feinberg, VS Pande
arXiv preprint arXiv:1703.10603, 2017
2472017
TensorFlow for deep learning: from linear regression to reinforcement learning
B Ramsundar, RB Zadeh
" O'Reilly Media, Inc.", 2018
2092018
Chemberta-2: Towards chemical foundation models
W Ahmad, E Simon, S Chithrananda, G Grand, B Ramsundar
arXiv preprint arXiv:2209.01712, 2022
832022
AMPL: a data-driven modeling pipeline for drug discovery
AJ Minnich, K McLoughlin, M Tse, J Deng, A Weber, N Murad, BD Madej, ...
Journal of chemical information and modeling 60 (4), 1955-1968, 2020
752020
{NVMKV}: A Scalable and Lightweight Flash Aware {Key-Value} Store
L Marmol, S Sundararaman, N Talagala, R Rangaswami, S Devendrappa, ...
6th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 14), 2014
722014
ChemBERTa: Large-scale self-supervised pretraining for molecular property prediction. arXiv 2020
S Chithrananda, G Grand, B Ramsundar
arXiv preprint arXiv:2010.09885 10, 2010
592010
Machine learning abstraction
N Talagala, V Sridhar, S Sundararaman, S Ghanta, L Amar, L Khermosh, ...
US Patent 11,748,653, 2023
532023
系统目前无法执行此操作,请稍后再试。
文章 1–20