End-to-end Deep Learning of Optimization Heuristics C Cummins, P Petoumenos, Z Wang, H Leather 26th International Conference on Parallel Architectures and Compilation …, 2017 | 238 | 2017 |
Compiler fuzzing through deep learning C Cummins, P Petoumenos, A Murray, H Leather Proceedings of the 27th ACM SIGSOFT international symposium on software …, 2018 | 167 | 2018 |
Synthesizing Benchmarks for Predictive Modeling C Cummins, P Petoumenos, Z Wang, H Leather International Symposium on Code Generationand Optimization (CGO), 2017 | 119 | 2017 |
Programl: A graph-based program representation for data flow analysis and compiler optimizations C Cummins, ZV Fisches, T Ben-Nun, T Hoefler, MFP O’Boyle, H Leather International Conference on Machine Learning, 2244-2253, 2021 | 99 | 2021 |
Programl: Graph-based deep learning for program optimization and analysis C Cummins, ZV Fisches, T Ben-Nun, T Hoefler, H Leather arXiv preprint arXiv:2003.10536, 2020 | 73 | 2020 |
Compilergym: Robust, Performant Compiler Optimization environments for AI Research C Cummins, B Wasti, J Guo, B Cui, J Ansel, S Gomez, S Jain, J Liu, ... CGO, 2022 | 61 | 2022 |
Machine learning in compilers: Past, present and future H Leather, C Cummins 2020 Forum for Specification and Design Languages (FDL), 1-8, 2020 | 50 | 2020 |
Value Learning for Throughput Optimization of Deep Learning Workloads B Steiner, C Cummins, H He, H Leather Proceedings of Machine Learning and Systems 3, 2021 | 46 | 2021 |
Autotuning OpenCL Workgroup Size for Stencil Patterns C Cummins, P Petoumenos, M Steuwer, H Leather The 6th International Workshop on Adaptive Self-tuning Computing Systems, HiPEAC, 2016 | 37 | 2016 |
PIP-DB: the protein isoelectric point database E Bunkute, C Cummins, FJ Crofts, G Bunce, IT Nabney, DR Flower Bioinformatics 31 (2), 295-296, 2015 | 31 | 2015 |
Large language models for compiler optimization C Cummins, V Seeker, D Grubisic, M Elhoushi, Y Liang, B Roziere, ... arXiv preprint arXiv:2309.07062, 2023 | 21 | 2023 |
Deep Learning for Compilers C Cummins University of Edinburgh, 2020 | 14 | 2020 |
A case study on machine learning for synthesizing benchmarks A Goens, A Brauckmann, S Ertel, C Cummins, H Leather, J Castrillon Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine …, 2019 | 14 | 2019 |
Learning space partitions for path planning K Yang, T Zhang, C Cummins, B Cui, B Steiner, L Wang, JE Gonzalez, ... Advances in Neural Information Processing Systems 34, 378-391, 2021 | 9 | 2021 |
Profile guided optimization without profiles: A machine learning approach N Rotem, C Cummins arXiv preprint arXiv:2112.14679, 2021 | 8 | 2021 |
SLaDe: A Portable Small Language Model Decompiler for Optimized Assembly J Armengol-Estapé, J Woodruff, C Cummins, MFP O'Boyle 2024 IEEE/ACM International Symposium on Code Generation and Optimization …, 2024 | 7 | 2024 |
Deep data flow analysis C Cummins, H Leather, Z Fisches, T Ben-Nun, T Hoefler, M O'Boyle arXiv preprint arXiv:2012.01470, 2020 | 6 | 2020 |
Towards Collaborative Performance Tuning of Algorithmic Skeletons C Cummins, P Petoumenos, M Steuwer, H Leather High-Level Programming for Heterogeneous and Hierarchical Parallel Systems …, 2016 | 6 | 2016 |
Benchpress: A deep active benchmark generator F Tsimpourlas, P Petoumenos, M Xu, C Cummins, K Hazelwood, A Rajan, ... Proceedings of the International Conference on Parallel Architectures and …, 2022 | 5 | 2022 |
Q-gym: An equality saturation framework for dnn inference exploiting weight repetition C Fu, H Huang, B Wasti, C Cummins, R Baghdadi, K Hazelwood, Y Tian, ... Proceedings of the International Conference on Parallel Architectures and …, 2022 | 5 | 2022 |